Dependence on MUC1-C in Progression of Neuroendocrine Prostate Cancer

被引:13
作者
Kufe, Donald [1 ]
机构
[1] Harvard Med Sch, Dana Farber Canc Inst, Boston, MA 02215 USA
基金
美国国家卫生研究院;
关键词
MUC1-C; NEPC; CSC; lineage plasticity; chromatin remodeling; CHROMATIN-REMODELING COMPLEX; MESENCHYMAL TRANSITION; EMBRYO IMPLANTATION; LINEAGE PLASTICITY; SWI/SNF COMPLEXES; DNA-REPAIR; GENE; EXPRESSION; CARCINOMA; TRANSCRIPTION;
D O I
10.3390/ijms24043719
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Castration resistant prostate cancer (CRPC) is responsive to androgen receptor (AR) axis targeted agents; however, patients invariably relapse with resistant disease that often progresses to neuroendocrine prostate cancer (NEPC). Treatment-related NEPC (t-NEPC) is highly aggressive with limited therapeutic options and poor survival outcomes. The molecular basis for NEPC progression remains incompletely understood. The MUC1 gene evolved in mammals to protect barrier tissues from loss of homeostasis. MUC1 encodes the transmembrane MUC1-C subunit, which is activated by inflammation and contributes to wound repair. However, chronic activation of MUC1-C contributes to lineage plasticity and carcinogenesis. Studies in human NEPC cell models have demonstrated that MUC1-C suppresses the AR axis and induces the Yamanaka OSKM pluripotency factors. MUC1-C interacts directly with MYC and activates the expression of the BRN2 neural transcription factor (TF) and other effectors, such as ASCL1, of the NE phenotype. MUC1-C also induces the NOTCH1 stemness TF in promoting the NEPC cancer stem cell (CSC) state. These MUC1-C-driven pathways are coupled with activation of the SWI/SNF embryonic stem BAF (esBAF) and polybromo-BAF (PBAF) chromatin remodeling complexes and global changes in chromatin architecture. The effects of MUC1-C on chromatin accessibility integrate the CSC state with the control of redox balance and induction of self-renewal capacity. Importantly, targeting MUC1-C inhibits NEPC self-renewal, tumorigenicity and therapeutic resistance. This dependence on MUC1-C extends to other NE carcinomas, such as SCLC and MCC, and identify MUC1-C as a target for the treatment of these aggressive malignancies with the anti-MUC1 agents now under clinical and preclinical development.
引用
收藏
页数:13
相关论文
共 102 条
[61]  
MERLO GR, 1989, CANCER RES, V49, P6966
[62]   Addiction of Merkel cell carcinoma to MUC1-C identifies a potential new target for treatment [J].
Morimoto, Yoshihiro ;
Fushimi, Atsushi ;
Yamashita, Nami ;
Hagiwara, Masayuki ;
Bhattacharya, Atrayee ;
Cheng, Jingwei ;
Frost, Thomas C. ;
Ahmad, Rehan ;
Daimon, Tatsuaki ;
Huang, Lei ;
Hata, Tsuyoshi ;
Takahashi, Hidekazu ;
Yamamoto, Masaaki ;
Suzuki, Yozo ;
DeCaprio, James A. ;
Kufe, Donald .
ONCOGENE, 2022, 41 (27) :3511-3523
[63]   MEK-ERK signaling is a therapeutic target in metastatic castration resistant prostate cancer [J].
Nickols, Nicholas G. ;
Nazarian, Ramin ;
Zhao, Shuang G. ;
Tan, Victor ;
Uzunangelov, Vladislav ;
Xia, Zheng ;
Baertsch, Robert ;
Neeman, Elad ;
Gao, Allen C. ;
Thomas, George, V ;
Howard, Lauren ;
De Hoedt, Amanda M. ;
Stuart, Josh ;
Goldstein, Theodore ;
Chi, Kim ;
Gleave, Martin E. ;
Graff, Julie N. ;
Beer, Tomasz M. ;
Drake, Justin M. ;
Evans, Christopher P. ;
Aggarwal, Rahul ;
Foye, Adam ;
Feng, Felix Y. ;
Small, Eric J. ;
Aronson, William J. ;
Freedland, Stephen J. ;
Witte, Owen N. ;
Huang, Jiaoti ;
Alumkal, Joshi J. ;
Reiter, Robert E. ;
Retti, Matthew B. .
PROSTATE CANCER AND PROSTATIC DISEASES, 2019, 22 (04) :531-538
[64]  
ORMEROD M G, 1984, Journal of Experimental Pathology (New York), V1, P263
[65]   Targeting the human MUC1-C oncoprotein with an antibody-drug conjugate [J].
Panchamoorthy, Govind ;
Jin, Caining ;
Raina, Deepak ;
Bharti, Ajit ;
Yamamoto, Masaaki ;
Adeebge, Dennis ;
Zhao, Qing ;
Bronson, Roderick ;
Jiang, Shirley ;
Li, Linjing ;
Suzuki, Yozo ;
Tagde, Ashujit ;
Ghoroghchian, P. Peter ;
Wong, Kwok-Kin ;
Kharbanda, Surender ;
Kufe, Donald .
JCI INSIGHT, 2018, 3 (12)
[66]  
Perletti G, 2017, ARCH ITAL UROL ANDRO, V89, P259, DOI 10.4081/aiua.2017.4.259
[67]   PBRM1 Regulates Stress Response in Epithelial Cells [J].
Porter, Elizabeth G. ;
Dhiman, Alisha ;
Chowdhury, Basudev ;
Carter, Benjamin C. ;
Lin, Hang ;
Stewart, Jane C. ;
Kazemian, Majid ;
Wendt, Michael K. ;
Dykhuizen, Emily C. .
ISCIENCE, 2019, 15 :196-+
[68]   Discovery of IDO1 Inhibitors: From Bench to Bedside [J].
Prendergast, George C. ;
Malachowski, William P. ;
DuHadaway, James B. ;
Muller, Alexander J. .
CANCER RESEARCH, 2017, 77 (24) :6795-6811
[69]   Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer [J].
Pritchard, C. C. ;
Mateo, J. ;
Walsh, M. F. ;
De Sarkar, N. ;
Abida, W. ;
Beltran, H. ;
Garofalo, A. ;
Gulati, R. ;
Carreira, S. ;
Eeles, R. ;
Elemento, O. ;
Rubin, M. A. ;
Robinson, D. ;
Lonigro, R. ;
Hussain, M. ;
Chinnaiyan, A. ;
Vinson, J. ;
Filipenko, J. ;
Garraway, L. ;
Taplin, M. -E. ;
AlDubayan, S. ;
Han, G. C. ;
Beightol, M. ;
Morrissey, C. ;
Nghiem, B. ;
Cheng, H. H. ;
Montgomery, B. ;
Walsh, T. ;
Casadei, S. ;
Berger, M. ;
Zhang, L. ;
Zehir, A. ;
Vijai, J. ;
Scher, H. I. ;
Sawyers, C. ;
Schultz, N. ;
Kantoff, P. W. ;
Solit, D. ;
Robson, M. ;
Van Allen, E. M. ;
Offit, K. ;
de Bono, J. ;
Nelson, P. S. .
NEW ENGLAND JOURNAL OF MEDICINE, 2016, 375 (05) :443-453
[70]   Neuroendocrine Differentiation in Prostate Cancer: Emerging Biology, Models, and Therapies [J].
Puca, Loredana ;
Vlachostergios, Panagiotis J. ;
Beltran, Himisha .
COLD SPRING HARBOR PERSPECTIVES IN MEDICINE, 2019, 9 (02)