On-demand continuous-variable quantum entanglement source for integrated circuits

被引:3
作者
Gunay, Mehmet [2 ]
Das, Priyam [3 ]
Yuce, Emre [4 ]
Polat, Emre Ozan [5 ]
Bek, Alpan [4 ]
Tasgin, Mehmet Emre [1 ]
机构
[1] Hacettepe Univ, Inst Nucl Sci, Ankara 06800, Turkiye
[2] Mehmet Akif Ersoy Univ, Fac Arts & Sci, Dept Nanosci & Nanotechnol, Burdur 15030, Turkiye
[3] Bankura Sammilani Coll, Dept Phys, Bankura 722101, India
[4] Middle East Tech Univ, Dept Phys, Ankara 06100, Turkiye
[5] Kadir Has Univ, Fac Engn & Nat Sci, Cibali 34083, Turkiye
关键词
Fano resonances; quantum integrated circuits; quantum optics; voltage control; STATES;
D O I
10.1515/nanoph-2022-0555
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Integration of devices generating non-classical states (such as entanglement) into photonic circuits is one of the major goals in achieving integrated quantum circuits (IQCs). This is demonstrated successfully in recent decades. Controlling the non-classicality generation in these micron scale devices is also crucial for the robust operation of the IQCs. Here, we propose a micron-scale quantum entanglement device whose nonlinearity (so the generated non classicality) can be tuned by several orders of magnitude via an applied voltage without altering the linear response. Quantum emitters (QEs), whose level-spacing can be tuned by voltage, are embedded into the hotspot of a metal nanostructure (MNS). QE-MNS coupling introduces a Fano resonance in the "nonlinear response". Nonlinearity, already enhanced extremely due to localization, can be controlled by the QEs' level-spacing. Nonlinearity can either be suppressed or be further enhanced by several orders. Fano resonance takes place in a relatively narrow frequency window so that similar to meV voltage-tunability for QEs becomes sufficient for a continuous turning on/off of the non-classicality. This provides as much as 5 orders of magnitude modulation depths.
引用
收藏
页码:229 / 237
页数:9
相关论文
共 89 条
[1]   High-Q photonic nanocavity in a two-dimensional photonic crystal [J].
Akahane, Y ;
Asano, T ;
Song, BS ;
Noda, S .
NATURE, 2003, 425 (6961) :944-947
[2]  
Andersen UL, 2015, NAT PHYS, V11, P713, DOI [10.1038/nphys3410, 10.1038/NPHYS3410]
[3]   Programmable multimode quantum networks [J].
Armstrong, Seiji ;
Morizur, Jean-Francois ;
Janousek, Jiri ;
Hage, Boris ;
Treps, Nicolas ;
Lam, Ping Koy ;
Bachor, Hans-A. .
NATURE COMMUNICATIONS, 2012, 3
[4]   Computable measure of nonclassicality for light -: art. no. 173602 [J].
Asbóth, JK ;
Calsamiglia, J ;
Ritsch, H .
PHYSICAL REVIEW LETTERS, 2005, 94 (17)
[5]   Development of Quantum Interconnects (QuICs) for Next-Generation Information Technologies [J].
Awschalom, David ;
Berggren, Karl K. ;
Bernien, Hannes ;
Bhave, Sunil ;
Carr, Lincoln D. ;
Davids, Paul ;
Economou, Sophia E. ;
Englund, Dirk ;
Faraon, Andrei ;
Fejer, Martin ;
Guha, Saikat ;
Gustafsson, Martin, V ;
Hu, Evelyn ;
Jiang, Liang ;
Kim, Jungsang ;
Korzh, Boris ;
Kumar, Prem ;
Kwiat, Paul G. ;
Loncar, Marko ;
Lukin, Mikhail D. ;
Miller, David A. B. ;
Monroe, Christopher ;
Nam, Sae Woo ;
Narang, Prineha ;
Orcutt, Jason S. ;
Raymer, Michael G. ;
Safavi-Naeini, Amir H. ;
Spiropulu, Maria ;
Srinivasan, Kartik ;
Sun, Shuo ;
Vuckovic, Jelena ;
Waks, Edo ;
Walsworth, Ronald ;
Weiner, Andrew M. ;
Zhang, Zheshen .
PRX QUANTUM, 2021, 2 (01)
[6]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[7]   Experimental investigation of criteria for continuous variable entanglement [J].
Bowen, WP ;
Schnabel, R ;
Lam, PK ;
Ralph, TC .
PHYSICAL REVIEW LETTERS, 2003, 90 (04)
[8]   Quantum information with continuous variables [J].
Braunstein, SL ;
van Loock, P .
REVIEWS OF MODERN PHYSICS, 2005, 77 (02) :513-577
[9]   When Entanglement Meets Classical Communications: Quantum Teleportation for the Quantum Internet [J].
Cacciapuoti, Angela Sara ;
Caleffi, Marcello ;
Van Meter, Rodney ;
Hanzo, Lajos .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (06) :3808-3833
[10]   Quantum Internet: Networking Challenges in Distributed Quantum Computing [J].
Cacciapuoti, Angela Sara ;
Caleffi, Marcello ;
Tafuri, Francesco ;
Cataliotti, Francesco Saverio ;
Gherardini, Stefano ;
Bianchi, Giuseppe .
IEEE NETWORK, 2020, 34 (01) :137-143