Lower Bound for Class Numbers of Certain Real Quadratic Fields

被引:1
|
作者
Mishra, Mohit [1 ,2 ]
机构
[1] HBNI, Harish Chandra Res Inst, Chhatnag Rd, Allahabad 211019, India
[2] Indian Inst Technol Kanpur, Dept Math, Kanpur 208016, Uttar Pradesh, India
关键词
real quadratic field; class group; class number; Dedekind zeta values; CRITERIA;
D O I
10.21136/CMJ.2022.0264-21
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let d be a square-free positive integer and h(d) be the class number of the real quadratic field Q(root d). We give an explicit lower bound for h(n(2)+r), where r= 1,4. Ankeny and Chowla proved that if g > 1 is a natural number and d=n(2g)+1 is a square-free integer, then g |h(d) whenever n > 4. Applying our lower bounds, we show that there does not exist any natural number n > 1 such that h(n(2g)+ 1) =g. We also obtain a similar result for the family Q(root n(2g)+4). As another application, we deduce some criteria fora class group of prime power order to be cyclic
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条