Lower Bound for Class Numbers of Certain Real Quadratic Fields

被引:1
作者
Mishra, Mohit [1 ,2 ]
机构
[1] HBNI, Harish Chandra Res Inst, Chhatnag Rd, Allahabad 211019, India
[2] Indian Inst Technol Kanpur, Dept Math, Kanpur 208016, Uttar Pradesh, India
关键词
real quadratic field; class group; class number; Dedekind zeta values; CRITERIA;
D O I
10.21136/CMJ.2022.0264-21
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let d be a square-free positive integer and h(d) be the class number of the real quadratic field Q(root d). We give an explicit lower bound for h(n(2)+r), where r= 1,4. Ankeny and Chowla proved that if g > 1 is a natural number and d=n(2g)+1 is a square-free integer, then g |h(d) whenever n > 4. Applying our lower bounds, we show that there does not exist any natural number n > 1 such that h(n(2g)+ 1) =g. We also obtain a similar result for the family Q(root n(2g)+4). As another application, we deduce some criteria fora class group of prime power order to be cyclic
引用
收藏
页码:1 / 14
页数:14
相关论文
共 25 条
[1]  
Ankeny N., 1955, Pacific J.Math., V5, P321, DOI [DOI 10.2140/PJM.1955.5.321, 10.2140/pjm.1955.5.321]
[2]   GENERALIZED DEDEKIND SUMS AND TRANSFORMATION FORMULAE OF CERTAIN LAMBERT SERIES [J].
APOSTOL, TM .
DUKE MATHEMATICAL JOURNAL, 1950, 17 (02) :147-157
[3]   Chowla's conjecture [J].
Biró, A .
ACTA ARITHMETICA, 2003, 107 (02) :179-194
[4]   Yokoi's conjecture [J].
Biró, A .
ACTA ARITHMETICA, 2003, 106 (01) :85-104
[5]   The class number one problem for the real quadratic fields Q√(an)2+4a) [J].
Biro, Andras ;
Lapkova, Kostadinka .
ACTA ARITHMETICA, 2016, 172 (02) :117-131
[6]   Class number 2 criteria for real quadratic fields of Richaud-Degert type [J].
Byeon, D ;
Kim, HK .
JOURNAL OF NUMBER THEORY, 1997, 62 (02) :257-272
[7]   Class number 1 criteria for real quadratic fields of Richaud-Degert type [J].
Byeon, DH ;
Kim, HK .
JOURNAL OF NUMBER THEORY, 1996, 57 (02) :328-339
[8]   A NOTE ON CERTAIN REAL QUADRATIC FIELDS WITH CLASS NUMBER UP TO THREE [J].
Chakraborty, Kalyan ;
Hoque, Azizul ;
Mishra, Mohit .
KYUSHU JOURNAL OF MATHEMATICS, 2020, 74 (01) :201-210
[9]  
Chakraborty K, 2021, ANN MATH QUE, V45, P203, DOI 10.1007/s40316-020-00139-1
[10]  
Chowla S., 1976, Glasg. Math. J., V17, P47