Leakage-Resilient Anonymous Multireceiver Certificateless Encryption Resistant to Side-Channel Attacks

被引:4
|
作者
Xie, Jia-Yi [1 ]
Tseng, Yuh-Min [1 ]
Huang, Sen-Shan [1 ]
机构
[1] Natl Changhua Univ Educ, Dept Math, Changhua 500, Taiwan
来源
IEEE SYSTEMS JOURNAL | 2023年 / 17卷 / 02期
关键词
Anonymity; certificateless encryption; leakage resilience; multireceiver; side-channel attacks; IDENTITY-BASED ENCRYPTION; BROADCAST ENCRYPTION; KEY ENCAPSULATION; PROVABLY SECURE; SIGNATURE; PROTOCOL; SCHEME; CRYPTOGRAPHY;
D O I
10.1109/JSYST.2022.3204902
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Anonymous multireceiver encryption (AMRE) allows a data provider to transmit a ciphertext to a designated group of receivers. Any receiver of the designated group can get the plaintext by decrypting this ciphertext while the receiver's identity is concealed to other receivers. In the past, several anonymous m ultireceiver certificateless encryption (AMR-CLE) schemes based on the certificateless public-key cryptography (CL-PKC) were proposed to remove both the certificate management problem of AMRE schemes based on the conventional public-key cryptography and the key escrow problem of AMR-IBE schemes based on the Ill-based public-key cryptography. Recently, side-channel attacks endanger the existing cryptographic schemes, AMRE, AMR-IBE, AMR-CLE, etc. To resist to such attacks, leakage-resilient cryptography is a novel way. However, until now, there exists no multireceiver encryption or AMRE scheme resistant to side-channel attacks. In this article, we present the first leakage-resilient anonymous multireceiver certificateless encryption (LR-AMR-CLE) scheme. In our scheme, attackers are granted to repeatedly extract tractional content of each secret key participated in our scheme and retains the original security of AMR-CLE, schemes.
引用
收藏
页码:2674 / 2685
页数:12
相关论文
共 50 条
  • [41] A New Construction of Leakage-Resilient Identity-Based Encryption Scheme
    Qiao, Zirui
    Xu, Ran
    Lu, Yonghui
    Zhou, Yanwei
    Yang, Bo
    INFORMATION SECURITY PRACTICE AND EXPERIENCE, ISPEC 2024, 2025, 15053 : 133 - 150
  • [42] Synthesis of Adaptive Side-Channel Attacks
    Quoc-Sang Phan
    Bang, Lucas
    Pasareanu, Corina S.
    Malacaria, Pasquale
    Bultan, Tevfik
    2017 IEEE 30TH COMPUTER SECURITY FOUNDATIONS SYMPOSIUM (CSF), 2017, : 328 - 342
  • [43] Efficient leakage-resilient public key encryption from DDH assumption
    Li, Sujuan
    Zhang, Futai
    Sun, Yinxia
    Shen, Limin
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2013, 16 (04): : 797 - 806
  • [44] MEAS: memory encryption and authentication secure against side-channel attacks
    Unterluggauer, Thomas
    Werner, Mario
    Mangard, Stefan
    JOURNAL OF CRYPTOGRAPHIC ENGINEERING, 2019, 9 (02) : 137 - 158
  • [45] Anonymous Identity Based Broadcast Encryption against Continual Side Channel Attacks in the State Partition Model
    Yu, Qihong
    Li, Jiguo
    Ji, Sai
    APPLIED SCIENCES-BASEL, 2022, 12 (18):
  • [46] MEAS: memory encryption and authentication secure against side-channel attacks
    Thomas Unterluggauer
    Mario Werner
    Stefan Mangard
    Journal of Cryptographic Engineering, 2019, 9 : 137 - 158
  • [47] Power attacks on a side-channel resistant elliptic curve implementation
    Geiselmann, W
    Steinwandt, R
    INFORMATION PROCESSING LETTERS, 2004, 91 (01) : 29 - 32
  • [48] Leakage-Resilient Symmetric Encryption via Re-keying
    Abdalla, Michel
    Belaid, Sonia
    Fouque, Pierre-Alain
    CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS - CHES 2013, 2013, 8086 : 471 - 488
  • [49] On the Detection of Side-Channel Attacks
    Vateva-Gurova, Tsvetoslava
    Suri, Neeraj
    2018 IEEE 23RD PACIFIC RIM INTERNATIONAL SYMPOSIUM ON DEPENDABLE COMPUTING (PRDC), 2018, : 185 - 186
  • [50] Practical continuous leakage-resilient CCA secure identity-based encryption
    Zhou, Yanwei
    Yang, Bo
    FRONTIERS OF COMPUTER SCIENCE, 2020, 14 (04)