Developing an abnormal high-Na-content P2-type layered oxide cathode with near-zero-strain for high-performance sodium-ion batteries

被引:15
|
作者
Hu, Hai-Yan [1 ,2 ]
Li, Jia-Yang [2 ]
Liu, Yi-Feng [2 ]
Zhu, Yan-Fang [1 ,2 ]
Li, Hong-Wei [2 ]
Jia, Xin-Bei [1 ,2 ]
Jian, Zhuang-Chun [1 ,2 ]
Liu, Han-Xiao [1 ,2 ]
Kong, Ling-Yi [1 ,2 ]
Li, Zhi-Qi [1 ,2 ]
Dong, Hang-Hang [2 ]
Zhang, Meng-Ke [4 ]
Qiu, Lang [4 ]
Wang, Jing-Qiang [2 ]
Chen, Shuang-Qiang [1 ,2 ]
Wu, Xiong-Wei [3 ]
Guo, Xiao-Dong [4 ]
Xiao, Yao [1 ,2 ]
机构
[1] Wenzhou Univ, Inst Carbon Neutralizat, Coll Chem & Mat Engn, Wenzhou 325035, Peoples R China
[2] Wenzhou Univ Technol, Innovat Inst Carbon Neutralizat, Wenzhou Key Lab Sodium Ion Batteries, Wenzhou 325035, Peoples R China
[3] Hunan Agr Univ, Sch Chem & Mat Sci, Changsha 410128, Peoples R China
[4] Sichuan Univ, Coll Chem Engn, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
OXYGEN;
D O I
10.1039/d3sc06878a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Layered transition metal oxides (NaxTMO2) possess attractive features such as large specific capacity, high ionic conductivity, and a scalable synthesis process, making them a promising cathode candidate for sodium-ion batteries (SIBs). However, NaxTMO2 suffer from multiple phase transitions and Na+/vacancy ordering upon Na+ insertion/extraction, which is detrimental to their electrochemical performance. Herein, we developed a novel cathode material that exhibits an abnormal P2-type structure at a stoichiometric content of Na up to 1. The cathode material delivers a reversible capacity of 108 mA h g-1 at 0.2C and 97 mA h g-1 at 2C, retaining a capacity retention of 76.15% after 200 cycles within 2.0-4.3 V. In situ diffraction studies demonstrated that this material exhibits an absolute solid-solution reaction with a low volume change of 0.8% during cycling. This near-zero-strain characteristic enables a highly stabilized crystal structure for Na+ storage, contributing to a significant improvement in battery performance. Overall, this work presents a simple yet effective approach to realizing high Na content in P2-type layered oxides, offering new opportunities for high-performance SIB cathode materials. A Mg-substituted abnormal P2-NaxTMO2 cathode material with a stoichiometric content of Na up to 1 was developed. Such ultrahigh Na content in the P2-type structure enables an absolute solid-solution reaction with near-zero-strain characteristics.
引用
收藏
页码:5192 / 5200
页数:9
相关论文
共 50 条
  • [1] Rational Design of a P2-Type Spherical Layered Oxide Cathode for High-Performance Sodium-Ion Batteries
    Xiao, Jun
    Zhang, Fan
    Tang, Kaikai
    Li, Xiao
    Wang, Dandan
    Wang, Yong
    Liu, Hao
    Wu, Minghong
    Wang, Guoxiu
    ACS CENTRAL SCIENCE, 2019, 5 (12) : 1937 - 1945
  • [2] Suppressed the High-Voltage Phase Transition of P2-Type Oxide Cathode for High-Performance Sodium-Ion Batteries
    Jiang, Kezhu
    Zhang, Xueping
    Li, Haoyu
    Zhang, Xiaoyu
    He, Ping
    Guo, Shaohua
    Zhou, Haoshen
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (16) : 14848 - 14853
  • [3] A high-entropy layered P2-type cathode with high stability for sodium-ion batteries
    Liu, Hongfeng
    Wang, Yingshuai
    Ding, Xiangyu
    Wang, Yusong
    Wu, Feng
    Gao, Hongcai
    SUSTAINABLE ENERGY & FUELS, 2024, 8 (06) : 1304 - 1313
  • [4] A New P2-Type Layered Oxide Cathode with Extremely High Energy Density for Sodium-Ion Batteries
    Hwang, Jang-Yeon
    Kim, Jongsoon
    Yu, Tae-Yeon
    Sun, Yang-Kook
    ADVANCED ENERGY MATERIALS, 2019, 9 (15)
  • [5] Electrochemical mechanism of high Na-content P2-type layered oxides for sodium-ion batteries
    Ying Yang
    Wei-Feng Wei
    Rare Metals, 2020, 39 : 332 - 334
  • [6] Electrochemical mechanism of high Na-content P2-type layered oxides for sodium-ion batteries
    Yang, Ying
    Wei, Wei-Feng
    RARE METALS, 2020, 39 (04) : 332 - 334
  • [7] Electrochemical mechanism of high Na-content P2-type layered oxides for sodium-ion batteries
    Ying Yang
    Wei-Feng Wei
    RareMetals, 2020, 39 (04) : 332 - 334
  • [8] High-performance P2-Type Fe/Mn-based oxide cathode materials for sodium-ion batteries
    Tang, Ke
    Wang, Yu
    Zhang, Xiaohui
    Jamil, Sidra
    Huang, Yan
    Cao, Shuang
    Xie, Xin
    Bai, Yansong
    Wang, Xianyou
    Luo, Zhigao
    Chen, Gairong
    ELECTROCHIMICA ACTA, 2019, 312 : 45 - 53
  • [9] Realizing Complete Solid-Solution Reaction in High Sodium Content P2-Type Cathode for High-Performance Sodium-Ion Batteries
    Jin, Ting
    Wang, Peng-Fei
    Wang, Qin-Chao
    Zhu, Kunjie
    Deng, Tao
    Zhang, Jiaxun
    Zhang, Wei
    Yang, Xiao-Qing
    Jiao, Lifang
    Wang, Chunsheng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (34) : 14511 - 14516
  • [10] Strain engineering by atomic lattice locking in P2-type layered oxide cathode for high-voltage sodium-ion batteries
    Yang, Ying
    Feng, Yuzhang
    Chen, Zhuo
    Feng, Yiming
    Huang, Qun
    Ma, Cheng
    Xia, Qingbing
    Liang, Chaoping
    Zhou, Liangjun
    Islam, M. Saiful
    Wang, Peng
    Zhou, Liang
    Mai, Liqiang
    Wei, Weifeng
    NANO ENERGY, 2020, 76 (76)