Global Coronal Magnetic Field Estimation Using Bayesian Inference

被引:1
|
作者
Baweja, Upasna [1 ,2 ]
Pant, Vaibhav [1 ]
Arregui, Inigo [3 ,4 ]
机构
[1] Aryabhatta Res Inst Observat Sci, Naini Tal 263001, India
[2] Mahatma Jyotiba Phule Rohilkhand Univ, Bareilly 243006, Uttar Pradesh, India
[3] Inst Astrofis Canarias, E-38205 San Cristobal la Laguna, Tenerife, Spain
[4] Univ La Laguna, Dept Astrofis, E-38206 San Cristobal la Laguna, Tenerife, Spain
基金
美国国家科学基金会;
关键词
LOOP OSCILLATIONS; SOLAR CORONA; TRANSVERSE OSCILLATIONS; TRANSITION-REGION; ATOMIC DATABASE; ALFVENIC WAVES; SEISMOLOGY; PULSATIONS; DENSITY; MISSION;
D O I
10.3847/1538-4357/ad1b57
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Estimating the magnetic field strength in the solar corona is crucial for understanding different physical processes happening over diverse spatiotemporal scales. However, the high temperatures and low density of the solar corona make this task challenging. The coronal magnetic field is too weak to produce a measurable splitting of the spectral lines using the Zeeman effect, and high temperature causes spectral lines to become weak and broad, making it difficult to detect the small Zeeman splitting. Coronal magneto-seismology, which combines the theoretical and observed properties of magnetohydrodynamic waves, can be used to infer the magnetic field strength of oscillating structures in the solar corona, which are otherwise difficult to estimate. In this work, we use the Doppler velocity and density data obtained from the Coronal Multichannel Polarimeter on 2016 October 14 to obtain the global map of the coronal magnetic field using Bayesian inference. Two priors are used for plasma density, viz Gaussian and uniform distributions. Bayesian inference provides us with the probability distribution for the magnetic field strength at each location from 1.05 to 1.35 R circle dot. A comparison between the magnetic field obtained using simple inversion and Bayesian inference is also drawn. We find that the values obtained using simple inversion do not always match the maximum posterior estimates obtained using Bayesian inference. We find that the inferred values follow a power-law function for the radial variation of the coronal magnetic field, with the power-law indices for simple and Bayesian inversion being similar.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Nonlinear force-free field extrapolation of the coronal magnetic field using the data obtained by the Hinode satellite
    He, Han
    Wang, Huaning
    Yan, Yihua
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2011, 116
  • [32] Null Point Distribution in Global Coronal Potential Field Extrapolations
    Edwards, S. J.
    Parnell, C. E.
    SOLAR PHYSICS, 2015, 290 (07) : 2055 - 2076
  • [33] USING CORONAL LOOPS TO RECONSTRUCT THE MAGNETIC FIELD OF AN ACTIVE REGION BEFORE AND AFTER A MAJOR FLARE
    Malanushenko, A.
    Schrijver, C. J.
    DeRosa, M. L.
    Wheatland, M. S.
    ASTROPHYSICAL JOURNAL, 2014, 783 (02)
  • [34] Spectral Lines in FUV and EUV for Diagnosing Coronal Magnetic Field
    Raveena Khan
    K. Nagaraju
    Solar Physics, 2022, 297
  • [35] How To Use Magnetic Field Information For Coronal Loop Identification
    T. Wiegelmann
    B. Inhester
    A. Lagg
    S. K. Solanki
    Solar Physics, 2005, 228 : 67 - 78
  • [36] Inference of magnetic field strength and density from damped transverse corona! waves
    Arregui, I
    Montes-Solis, M.
    Asensio Ramos, A.
    ASTRONOMY & ASTROPHYSICS, 2019, 625
  • [37] Solar Coronal Magnetic Field Extrapolation from Synchronic Data with AI-generated Farside
    Jeong, Hyun-Jin
    Moon, Yong-Jae
    Park, Eunsu
    Lee, Harim
    ASTROPHYSICAL JOURNAL LETTERS, 2020, 903 (02)
  • [38] Application of a Magnetic-field-induced Transition in Fe x to Solar and Stellar Coronal Magnetic Field Measurements
    Chen, Yajie
    Li, Wenxian
    Tian, Hui
    Bai, Xianyong
    Hutton, Roger
    Brage, Tomas
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2023, 23 (02)
  • [39] Reconstructing the Coronal Magnetic Field: The Role of Cross-field Currents in Solution Uniqueness
    Mathews, Nathaniel H.
    Flyer, Natasha
    Gibson, Sarah E.
    ASTROPHYSICAL JOURNAL, 2020, 898 (01)
  • [40] Response of the solar atmosphere to magnetic field evolution in a coronal hole region
    Yang, S. H.
    Zhang, J.
    Jin, C. L.
    Li, L. P.
    Duan, H. Y.
    ASTRONOMY & ASTROPHYSICS, 2009, 501 (02): : 745 - 753