On the Invariant Subspace Problem via Universal Toeplitz Operators on the Hardy Space Over the Bidisk

被引:0
作者
do Carmo, Joao Marcos R. [1 ]
Ferreira, Marcos S. [2 ]
机构
[1] Inst Fed Bahia, Seabra, Ba, Brazil
[2] Univ Estadua Santa Cruz, Dept Ciencias Exatas, Ilheus, Ba, Brazil
来源
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY | 2024年 / 55卷 / 02期
关键词
Invariant subspace problem; Toeplitz operator; Hardy space; Universal operator;
D O I
10.1007/s00574-024-00386-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The invariant subspace problem (ISP) for Hilbert spaces asks if every bounded linear operator has a non-trivial closed invariant subspace. Due to the existence of universal operators (in the sense of Rota) the ISP can be solved by proving that every minimal invariant subspace of a universal operator is one dimensional. In this work, we obtain conditions for T phi*|M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T<^>{*}_{\varphi }|_{M}$$\end{document} to have a non-trivial subspace where M subset of H2(D2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\subset H<^>{2}({\mathbb {D}}<^>{2})$$\end{document} is an invariant subspace of the Toeplitz operator T phi*\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\varphi }<^>{*}$$\end{document} on the Hardy space over the bidisk H2(D2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>{2}({\mathbb {D}}<^>{2})$$\end{document} induced by the symbol phi is an element of H infinity(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi \in H<^>{\infty }({\mathbb {D}})$$\end{document}. We then use this fact to obtain sufficient conditions for the ISP to be true.
引用
收藏
页数:9
相关论文
共 14 条
  • [1] AHERN PR, 1970, J MATH MECH, V19, P963
  • [2] UNIVERSAL OPERATORS AND INVARIANT SUBSPACES
    CARADUS, SR
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 23 (03) : 526 - &
  • [3] UNIVERSAL COMPOSITION OPERATORS
    Carmo, Joao R.
    Noor, S. Waleed
    [J]. JOURNAL OF OPERATOR THEORY, 2022, 87 (01) : 137 - 156
  • [4] Chalendar I., 2011, MODERN APPROACHES IN, DOI [10.1017/CBO9780511862434, DOI 10.1017/CBO9780511862434]
  • [5] A HYPERBOLIC UNIVERSAL OPERATOR COMMUTING WITH A COMPACT OPERATOR
    Cowen, Carl C.
    Gallardo-Gutierrez, Eva A.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (05) : 1985 - 1995
  • [6] An introduction to Rota's universal operators: properties, old and new examples and future issues
    Cowen, Carl C.
    Gallardo-Gutierrez, Eva A.
    [J]. CONCRETE OPERATORS, 2016, 3 (01): : 43 - 51
  • [7] Rota's universal operators and invariant subspaces in Hilbert spaces
    Cowen, Carl C.
    Gallardo-Gutierrez, Eva A.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (05) : 1130 - 1149
  • [8] Consequences of universality among Toeplitz operators
    Cowen, Carl C.
    Gallardo-Gutierrez, Eva A.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 432 (01) : 484 - 503
  • [9] Ferreira M, 2020, Arxiv, DOI arXiv:2009.06751
  • [10] Invariant subspaces generated by a single function in the Polydisk
    Koca, B. B.
    Sadik, N.
    [J]. MATHEMATICAL NOTES, 2017, 102 (1-2) : 193 - 197