Exploring the (Dis)-Similarities of Half-Cell and Full Cell Zero-Gap Electrolyzers for the CO2 Electroreduction

被引:7
作者
Chanda, Vimanshu [1 ]
Blaudszun, Dennis [2 ]
Hoof, Lucas [2 ]
Sanjuan, Ignacio [1 ]
Pellumbi, Kevinjeorjios [2 ]
Junge Puring, Kai [2 ]
Andronescu, Corina [1 ,3 ]
Apfel, Ulf-Peter [2 ,4 ]
机构
[1] Univ Duisburg Essen, Fac Chem, Chem Technol 3, Univ Str 7, D-45141 Essen, Germany
[2] UMSICHT, Fraunhofer Inst Environm Safety & Energy Technol, Osterfelderstr 3, D-46047 Oberhausen, Germany
[3] Ctr Nanointegrat Duisburg Essen CENIDE, Carl Benz Str 199, D-47057 Duisburg, Germany
[4] Ruhr Univ Bochum, Inorgan Chem 1, Tech Electrochem, Univ str 150, D-44780 Bochum, Germany
关键词
Zero-gap half-cell; Zero-gap electrolyzer; Gas diffusion electrode; CO2; electroreduction; REDUCTION; ELECTRODES; ELECTROCATALYSTS;
D O I
10.1002/celc.202300715
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Carbon dioxide electroreduction (CO2R) is a promising technology for mitigating industrial CO2 emissions and generating valuable chemicals using renewable energy sources. Recent advances have centered on fine-tuning catalyst materials and their micro-environments, stimulating interest within the CO2R community. However, testing novel catalyst materials often occurs under conditions different from those relevant to industrial applications. In this study, we explore the transferability of CO2R results obtained using Ag-based gas diffusion electrode (GDEs) in an easy to fabricate, assemble and test zero-gap half-cell (ZGHC) to a zero-gap electrolyzer (ZGE). Our investigation reveals that the transferability of results is not only influenced by the reactor design, but also partially dependent on the type of additive used in the catalyst layer of the GDE. Moreover, we show that the humidity of the CO2 is a crucial operational parameter that not only impacts the selectivity of the electrode but also influences its stability during testing in the ZGHC. These findings highlight the importance of comprehensively considering operational conditions as well as reactor designs when comparing results between the ZGHC and ZGE, presenting finally a pathway on how to minimize such differences.
引用
收藏
页数:12
相关论文
共 47 条
[1]   Electrochemical Reduction of CO2 on Au Electrocatalysts in a Zero-Gap, Half-Cell Gas Diffusion Electrode Setup: a Systematic Performance Evaluation and Comparison to an H-cell Setup [J].
Alinejad, Shima ;
Quinson, Jonathan ;
Wiberg, Gustav K. H. ;
Schlegel, Nicolas ;
Zhang, Damin ;
Li, Yao ;
Reichenberger, Sven ;
Barcikowski, Stephan ;
Arenz, Matthias .
CHEMELECTROCHEM, 2022, 9 (12)
[2]   Testing fuel cell catalysts under more realistic reaction conditions: accelerated stress tests in a gas diffusion electrode setup [J].
Alinejad, Shima ;
Inaba, Masanori ;
Schroder, Johanna ;
Du, Jia ;
Quinson, Jonathan ;
Zana, Alessandro ;
Arenz, Matthias .
JOURNAL OF PHYSICS-ENERGY, 2020, 2 (02)
[3]  
Arend MG, 2023, ERGONOMICS, V66, P1255, DOI [10.1080/00140139.2022.2144646, 10.1002/elsa.202100190]
[4]   Narrow Pressure Stability Window of Gas Diffusion Electrodes Limits the Scale-Up of CO2 Electrolyzers [J].
Baumgartner, Lorenz M. ;
Koopman, Christel, I ;
Forner-Cuenca, Antoni ;
Vermaas, David A. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (14) :4683-4693
[5]   A CuOx/Cu/C electrocatalyst-based gas diffusion electrode for the electroreduction of CO2 with high selectivity to C2H4 [J].
Chanda, Vimanshu ;
Junqueira, Joao R. C. ;
Sikdar, Nivedita ;
Sanjuan, Ignacio ;
Braun, Michael ;
Dieckhoefer, Stefan ;
Seisel, Sabine ;
Andronescu, Corina .
ELECTROCHEMICAL SCIENCE ADVANCES, 2023, 3 (05)
[6]   Microenvironments of Cu catalysts in zero-gap membrane electrode assembly for efficient CO2 electrolysis to C2+ products [J].
Choi, Woong ;
Choi, Yongjun ;
Choi, Eunsuh ;
Yun, Hyewon ;
Jung, Wonsang ;
Lee, Woong Hee ;
Oh, Hyung-Suk ;
Won, Da Hye ;
Na, Jonggeol ;
Hwang, Yun Jeong .
JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (19) :10363-10372
[7]   Benchmarking Fuel Cell Electrocatalysts Using Gas Diffusion Electrodes: Inter-lab Comparison and Best Practices [J].
Ehelebe, Konrad ;
Schmitt, Nicolai ;
Sievers, Gustav ;
Jensen, Anders W. ;
Hrnji, Armin ;
Jimenez, Pablo Collantes ;
Kaiser, Pascal ;
Geuss, Moritz ;
Ku, Yu-Ping ;
Jovanovic, Primoz ;
Mayrhofer, Karl J. J. ;
Etzold, Bastian ;
Hodnik, Nejc ;
Escudero-Escribano, Maria ;
Arenz, Matthias ;
Cherevko, Serhiy .
ACS ENERGY LETTERS, 2022, 7 (02) :816-826
[8]   High carbonate ion conductance of a robust PiperION membrane allows industrial current density and conversion in a zero-gap carbon dioxide electrolyzer cell [J].
Endrodi, B. ;
Kecsenovity, E. ;
Samu, A. ;
Halmagyi, T. ;
Rojas-Carbonell, S. ;
Wang, L. ;
Yan, Y. ;
Janaky, C. .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (11) :4098-4105
[9]   Mitigation of Carbon Crossover in CO2 Electrolysis by Use of Bipolar Membranes [J].
Eriksson, Bjorn ;
Asset, Tristan ;
Spanu, Francesco ;
Lecoeur, Frederic ;
Dupont, Marc ;
Garces-Pineda, Felipe A. ;
Ramon Galan-Mascaros, Jose ;
Cavaliere, Sara ;
Roziere, Jacques ;
Jaouen, Frederic .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (03)
[10]   Environment Matters: CO2RR Electrocatalyst Performance Testing in a Gas-Fed Zero-Gap Electrolyzer [J].
Galvez-Vazquez, Maria de Jesus ;
Moreno-Garcia, Pavel ;
Xu, Heng ;
Hou, Yuhui ;
Hu, Huifang ;
Montiel, Ivan Zelocualtecatl ;
Rudnev, Alexander, V ;
Alinejad, Shima ;
Grozovski, Vitali ;
Wiley, Benjamin J. ;
Arenz, Matthias ;
Broekmann, Peter .
ACS CATALYSIS, 2020, 10 (21) :13096-13108