A Fast Geometric Multigrid Method for Curved Surfaces

被引:2
作者
Wiersma, Ruben [1 ]
Nasikun, Ahmad [1 ,2 ]
Eisemann, Elmar [1 ]
Hildebrandt, Klaus [1 ]
机构
[1] Delft Univ Technol, Delft, Netherlands
[2] Univ Gadjah Mada, Yogyakarta, Indonesia
来源
PROCEEDINGS OF SIGGRAPH 2023 CONFERENCE PAPERS, SIGGRAPH 2023 | 2023年
关键词
geometric multigrid; multigrid methods; Laplace matrix; geometry processing; Poisson problems;
D O I
10.1145/3588432.3591502
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a geometric multigrid method for solving linear systems arising from variational problems on surfaces in geometry processing, Gravo MG. Our scheme uses point clouds as a reduced representation of the levels of the multigrid hierarchy to achieve a fast hierarchy construction and to extend the applicability of the method from triangle meshes to other surface representations like point clouds, nonmanifold meshes, and polygonal meshes. To build the prolongation operators, we associate each point of the hierarchy to a triangle constructed from points in the next coarser level. We obtain well-shaped candidate triangles by computing graph Voronoi diagrams centered around the coarse points and determining neighboring Voronoi cells. Our selection of triangles ensures that the connections of each point to points at adjacent coarser and finer levels are balanced in the tangential directions. As a result, we obtain sparse prolongation matrices with three entries per row and fast convergence of the solver. Code is available at https://graphics.tudelft.nl/gravo_mg.
引用
收藏
页数:11
相关论文
共 50 条
[41]   NONCONFORMING MULTIGRID METHOD FOR NONSYMMETRIC AND INDEFINITE PROBLEMS [J].
YON, YJ ;
KWAK, DY .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 30 (11) :1-7
[42]   A MULTIGRID FRAME BASED METHOD FOR IMAGE DEBLURRING [J].
Buccini, Alessandro ;
Donatelli, Marco .
ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2020, 53 :283-312
[43]   A multigrid preconditioned Newton-Krylov method [J].
Knoll, DA ;
Rider, WJ .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (02) :691-710
[44]   A multigrid method for constrained optimal control problems [J].
Engel, M. ;
Griebel, M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (15) :4368-4388
[45]   Robust multigrid preconditioner for fast finite element modeling of microwave devices [J].
Zhu, Y ;
Cangellaris, AC .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2001, 11 (10) :416-418
[46]   Parallel Geometric Multigrid Preconditioner for 3D FEM in NuscaS Software Package [J].
Olas, Tomasz .
PARALLEL PROCESSING AND APPLIED MATHEMATICS (PPAM 2013), PT I, 2014, 8384 :166-177
[47]   A geometric data structure for parallel finite elements and the application to multigrid methods with block smoothing [J].
Wieners, Christian .
COMPUTING AND VISUALIZATION IN SCIENCE, 2010, 13 (04) :161-175
[48]   A FAST MULTIGRID ALGORITHM FOR ENERGY MINIMIZATION UNDER PLANAR DENSITY CONSTRAINTS [J].
Ron, Dorit ;
Safro, Ilya ;
Brandt, Achi .
MULTISCALE MODELING & SIMULATION, 2010, 8 (05) :1599-1620
[49]   A quasi-cache-aware model for optimal domain partitioning in parallel geometric multigrid [J].
Saxena, Gaurav ;
Jimack, Peter K. ;
Walkley, Mark A. .
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2018, 30 (09)
[50]   UNIFIED GEOMETRIC MULTIGRID ALGORITHM FOR HYBRIDIZED HIGH-ORDER FINITE ELEMENT METHODS [J].
Wildey, Tim ;
Muralikrishnan, Sriramkrishnan ;
Tan Bui-Thanh .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (05) :S172-S195