A Fast Geometric Multigrid Method for Curved Surfaces

被引:2
作者
Wiersma, Ruben [1 ]
Nasikun, Ahmad [1 ,2 ]
Eisemann, Elmar [1 ]
Hildebrandt, Klaus [1 ]
机构
[1] Delft Univ Technol, Delft, Netherlands
[2] Univ Gadjah Mada, Yogyakarta, Indonesia
来源
PROCEEDINGS OF SIGGRAPH 2023 CONFERENCE PAPERS, SIGGRAPH 2023 | 2023年
关键词
geometric multigrid; multigrid methods; Laplace matrix; geometry processing; Poisson problems;
D O I
10.1145/3588432.3591502
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a geometric multigrid method for solving linear systems arising from variational problems on surfaces in geometry processing, Gravo MG. Our scheme uses point clouds as a reduced representation of the levels of the multigrid hierarchy to achieve a fast hierarchy construction and to extend the applicability of the method from triangle meshes to other surface representations like point clouds, nonmanifold meshes, and polygonal meshes. To build the prolongation operators, we associate each point of the hierarchy to a triangle constructed from points in the next coarser level. We obtain well-shaped candidate triangles by computing graph Voronoi diagrams centered around the coarse points and determining neighboring Voronoi cells. Our selection of triangles ensures that the connections of each point to points at adjacent coarser and finer levels are balanced in the tangential directions. As a result, we obtain sparse prolongation matrices with three entries per row and fast convergence of the solver. Code is available at https://graphics.tudelft.nl/gravo_mg.
引用
收藏
页数:11
相关论文
共 50 条
[21]   Multigrid for an HDG method [J].
Cockburn, B. ;
Dubois, O. ;
Gopalakrishnan, J. ;
Tan, S. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (04) :1386-1425
[22]   GEOMETRIC MULTIGRID FOR THE TIGHT-BINDING HAMILTONIAN OF GRAPHENE [J].
Kahl, Karsten ;
Kintscher, Nils .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (01) :499-519
[23]   A geometric multigrid preconditioning strategy for DPG system matrices [J].
Roberts, Nathan V. ;
Chan, Jesse .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (08) :2018-2043
[24]   Magneto-mechanical simulations by a coupled fast multipole method-finite element method and multigrid solvers [J].
Frangi, A ;
Faure-Ragani, P ;
Ghezzi, L .
COMPUTERS & STRUCTURES, 2005, 83 (10-11) :718-726
[25]   Coupling p-multigrid to geometric multigrid for discontinuous Galerkin formulations of the convection-diffusion equation [J].
Mascarenhas, Brendan S. ;
Helenbrook, Brian T. ;
Atkins, Harold L. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (10) :3664-3674
[26]   A massively parallel geometric multigrid solver on hierarchically distributed grids [J].
Reiter, Sebastian ;
Vogel, Andreas ;
Heppner, Ingo ;
Rupp, Martin ;
Wittum, Gabriel .
COMPUTING AND VISUALIZATION IN SCIENCE, 2013, 16 (04) :151-164
[27]   Optimization of Geometric Multigrid for Emerging Multi- and Manycore Processors [J].
Williams, Samuel ;
Kalamkar, Dhiraj D. ;
Singh, Amik ;
Deshpande, Anand M. ;
Van Straalen, Brian ;
Smelyanskiy, Mikhail ;
Almgren, Ann ;
Dubey, Pradeep ;
Shalf, John ;
Oliker, Leonid .
2012 INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SC), 2012,
[28]   Performance of Geometric Multigrid Method for Two-Dimensional Burgers' Equations with Non-Orthogonal, Structured Curvilinear Grids [J].
Zanatta, Daiane Cristina ;
Arak, Luciano Kiyoshi ;
Villela Pinto, Marcio Augusto ;
FernandoMoro, Diego .
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2020, 125 (03) :1061-1081
[29]   Generalized Rigid and Generalized Affine Image Registration and Interpolation by Geometric Multigrid [J].
Stephen L. Keeling .
Journal of Mathematical Imaging and Vision, 2007, 29 :163-183
[30]   Vector extrapolation methods applied to geometric multigrid solvers for isogeometric analysis [J].
Mouhssine, Abdellatif ;
Ratnani, Ahmed ;
Sadok, Hassane .
NUMERICAL ALGORITHMS, 2025,