A FULLY DISCRETE LOW-REGULARITY INTEGRATOR FOR THE KORTEWEG-DE VRIES EQUATION

被引:0
作者
Li, Yongsheng [1 ]
Yao, Fangyan [1 ]
机构
[1] South China Univ Technol, Sch Math Sci, Guangzhou 510640, Guangdong, Peoples R China
关键词
The KdV equation; low regularity; fully discrete; fast Fourier transform; KDV;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose a fully discrete low-regularity integrator for the Korteweg-de Vries equation on the torus. This is an explicit scheme and can be computed with a complexity of O(NlogN) operations by fast Fourier transform, where N is the degrees of freedom in the spatial discretization. We prove that the scheme is first-order convergent in both time and space variables in H gamma-norm for H gamma +1 initial data under Courant-Friedrichs-Lewy condition N >= 1/tau, where tau denotes the temporal step size. We also carry out numerical experiments that illustrate the convergence behavior.
引用
收藏
页码:1917 / 1935
页数:19
相关论文
共 25 条
  • [1] Sharp global well-posedness for KDV and modified KDV on R and T
    Colliander, J
    Keel, M
    Staffilani, G
    Takaoka, H
    Tao, T
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (03) : 705 - 749
  • [2] Error estimates of finite difference schemes for the Korteweg-de Vries equation
    Courtes, Clementine
    Lagoutiere, Frederic
    Rousset, Frederic
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (01) : 628 - 685
  • [3] STABILITY OF SOME FINITE-DIFFERENCE SCHEMES FOR KORTEWEG-DEVRIES EQUATION
    GODA, K
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1975, 39 (01) : 229 - 236
  • [4] Exponential Runge-Kutta methods for parabolic problems
    Hochbruck, M
    Ostermann, A
    [J]. APPLIED NUMERICAL MATHEMATICS, 2005, 53 (2-4) : 323 - 339
  • [5] Hochbruck M, 2010, ACTA NUMER, V19, P209, DOI 10.1017/S0962492910000048
  • [6] An exponential-type integrator for the KdV equation
    Hofmanova, Martina
    Schratz, Katharina
    [J]. NUMERISCHE MATHEMATIK, 2017, 136 (04) : 1117 - 1137
  • [7] Operator splitting methods for generalized Korteweg-de Vries equations
    Holden, H
    Karlsen, KH
    Risebro, NH
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 153 (01) : 203 - 222
  • [8] Convergence of a fully discrete finite difference scheme for the Korteweg-de Vries equation
    Holden, Helge
    Koley, Ujjwal
    Risebro, Nils Henrik
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (03) : 1047 - 1077
  • [9] Holden H, 2013, MATH COMPUT, V82, P173
  • [10] OPERATOR SPLITTING FOR THE KdV EQUATION
    Holden, Helge
    Karlsen, Kenneth H.
    Risebro, Nils Henrik
    Tao, Terence
    [J]. MATHEMATICS OF COMPUTATION, 2011, 80 (274) : 821 - 846