Garnet Electrolyte-Based Integrated Architecture for High-Performance All-Solid-State Lithium-Oxygen Batteries

被引:28
作者
Gu, Zhi [1 ,2 ]
Xin, Xing [3 ]
Xu, Zelin [1 ]
He, Jun [2 ]
Wu, Jinghua [1 ,4 ]
Sun, Yong [2 ]
Yao, Xiayin [1 ,4 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Peoples R China
[2] Univ Nottingham Ningbo China, Fac Sci & Engn, Dept Chem & Environm Engn, Ningbo 315100, Peoples R China
[3] Ningbo Univ, Sch Mat Sci & Chem Engn, Ningbo 315211, Peoples R China
[4] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
garnet electrolytes; integrated structures; Li-O-2; batteries; polymer buffer layer; solid-state electrolytes; triple-phase boundaries; LI-AIR BATTERIES; ION CONDUCTION; LI-O-2; BATTERY; CATHODE; DENSITY;
D O I
10.1002/adfm.202301583
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
All-solid-state lithium-oxygen (Li-O-2) battery is considered to be a promising next-generation energy storage system to address the issues related to low specific capacity, unsafety and unstable electrochemistry that exist in conventional liquid Li-O-2 batteries. However, current solid-state Li-O-2 batteries still encounter the challenge of high impedance at the electrode/electrolyte interface. In addition, the deficiency of triple-phase boundaries (containing Li+, e(-) and O-2) limits the active sites for electrochemical reaction in the battery cathode. Herein, an integrated architecture based on a garnet electrolyte Li6.4La3Zr1.4Ta0.6O12 (LLZTO) and a porous composite cathode for high-performance all-solid-state Li-O-2 batteries is developed. The unique internal structure effectively reduces the interfacial impedance of the battery, provides a large number of active sites at triple-phase boundaries and increases the electrochemical stability. As a result, the obtained batteries can deliver a superior high full discharge capacity of 13.04 mA h cm(-2) and an excellent cyclic performance (86 cycles). In addition, X-ray photoelectron spectroscopy, differential electrochemical mass spectrometry and theoretical calculations further demonstrate the effectiveness of this design in enhancing the interfacial performance, electrochemical performance, and stability of the battery. This study is thus expected to facilitate practical applications for truly all-solid-state Li-O-2 batteries, and even for other systems of metal-oxygen (air) batteries.
引用
收藏
页数:10
相关论文
共 65 条
[51]   Ultra-fine surface solid-state electrolytes for long cycle life all-solid-state lithium-air batteries [J].
Wang, Sheng ;
Wang, Jue ;
Liu, Jingjing ;
Song, Hucheng ;
Liu, Yijie ;
Wang, Pengfei ;
He, Ping ;
Xu, Jun ;
Zhou, Haoshen .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (43) :21248-21254
[52]   The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries [J].
Wu, Bingbin ;
Wang, Shanyu ;
Lochala, Joshua ;
Desrochers, David ;
Liu, Bo ;
Zhang, Wenqing ;
Yang, Jihui ;
Xiao, Jie .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (07) :1803-1810
[53]   Gallium-Doped Li7La3Zr2O12 Garnet-Type Electrolytes with High Lithium-Ion Conductivity [J].
Wu, Jian-Fang ;
Chen, En-Yi ;
Yu, Yao ;
Liu, Lin ;
Wu, Yue ;
Pang, Wei Kong ;
Peterson, Vanessa K. ;
Guo, Xin .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (02) :1542-1552
[54]   High-efficient CoPt/activated functional carbon catalyst for Li-O2 batteries [J].
Xia, Han ;
Xie, Qifan ;
Tian, Yuhui ;
Chen, Qiang ;
Wen, Ming ;
Zhang, Jianli ;
Wang, Yao ;
Tang, Yiping ;
Zhang, Shanqing .
NANO ENERGY, 2021, 84
[55]   Rechargeable solid-state Li-air batteries: a status report [J].
Yang, Chu-Shu ;
Gao, Kang-Ning ;
Zhang, Xiao-Ping ;
Sun, Zhuang ;
Zhang, Tao .
RARE METALS, 2018, 37 (06) :459-472
[56]   Novel Stable Gel Polymer Electrolyte: Toward a High Safety and Long Life Li-Air Battery [J].
Yi, Jin ;
Liu, Xizheng ;
Guo, Shaohua ;
Zhu, Kai ;
Xue, Hailong ;
Zhou, Haoshen .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (42) :23798-23804
[57]   Oxygen- and dendrite-resistant ultra-dry polymer electrolytes for solid-state Li-O2 batteries [J].
Yu, Wei ;
Xue, Chuanjiao ;
Hu, Bingkun ;
Xu, Bingqing ;
Li, Liangliang ;
Nan, Ce-Wen .
ENERGY STORAGE MATERIALS, 2020, 27 :244-251
[58]   3D Porous Garnet/Gel Polymer Hybrid Electrolyte for Safe Solid-State Li-O2 Batteries with Long Lifetimes [J].
Zhao, Changtai ;
Sun, Qian ;
Luo, Jing ;
Liang, Jianneng ;
Liu, Yulong ;
Zhang, Lei ;
Wang, Jiwei ;
Deng, Sixu ;
Lin, Xiaoting ;
Yang, Xiaofei ;
Huang, Huan ;
Zhao, Shangqian ;
Zhang, Li ;
Lu, Shigang ;
Sun, Xueliang .
CHEMISTRY OF MATERIALS, 2020, 32 (23) :10113-10119
[59]   Transition of the Reaction from Three-Phase to Two-Phase by Using a Hybrid Conductor for High-Energy-Density High-Rate Solid-State Li-O2 Batteries [J].
Zhao, Changtai ;
Zhu, Yuanmin ;
Sun, Qian ;
Wang, Changhong ;
Luo, Jing ;
Lin, Xiaoting ;
Yang, Xiaofei ;
Zhao, Yang ;
Li, Ruying ;
Zhao, Shangqian ;
Huang, Huan ;
Zhang, Li ;
Lu, Shigang ;
Gu, Meng ;
Sun, Xueliang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (11) :5821-5826
[60]   Single Semi-Metallic Selenium Atoms on Ti3C2 MXene Nanosheets as Excellent Cathode for Lithium-Oxygen Batteries [J].
Zhao, Danyang ;
Wang, Peng ;
Di, Haoxiang ;
Zhang, Peng ;
Hui, Xiaobin ;
Yin, Longwei .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (29)