A note on Bass? conjecture

被引:0
作者
Avelar, D. V. [1 ]
Martinez, F. E. Brochero [2 ]
Ribas, S. [3 ]
机构
[1] Univ Fed Fluminense, Dept Anal, BR-24210201 Niteroi, RJ, Brazil
[2] Univ Fed Minas Gerais, Dept Matemat, BR-31270901 Belo Horizonte, MG, Brazil
[3] Univ Fed Ouro Preto, Dept Matemat, BR-35400000 Ouro Preto, MG, Brazil
关键词
Zero-sum problem; Small Davenport constant; Gao constant; Bass? conjecture; Metacyclic groups; GINZBURG-ZIV THEOREM; NUMBER;
D O I
10.1016/j.jnt.2023.02.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a finite group G, we denote by d(G) and by E(G), respectively, the small Davenport constant and the Gao constant of G. Let Cn be the cyclic group of order n and let Gm,n,s = Cn Ns Cm be a metacyclic group. In [2, Conjecture 17], Bass conjectured that d(Gm,n,s) = m + n - 2 and E(Gm,n,s) = mn + m + n - 2 provided ordn(s) = m. In this paper, we show that the assumption ordn(s) = m is essential and cannot be removed. Moreover, if we suppose that Bass' conjecture holds for Gm,n,s and the mn-pro duct-one free sequences of maximal length are well behaved, then Bass conjecture also holds for G2m,2n,r, where r2 equivalent to s (mod n).(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:462 / 469
页数:8
相关论文
共 12 条
  • [1] On the direct and inverse zero-sum problems over Cn (sic)s C2
    Avelar, D. V.
    Martinez, F. E. Brochero
    Ribas, S.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2023, 197
  • [2] Improving the Erdos-Ginzburg-Ziv theorem for some non-abelian groups
    Bass, Jared
    [J]. JOURNAL OF NUMBER THEORY, 2007, 126 (02) : 217 - 236
  • [3] The Noether numbers and the Davenport constants of the groups of order less than 32
    Cziszter, Kalman
    Domokos, Matyas
    Szollosi, Istvan
    [J]. JOURNAL OF ALGEBRA, 2018, 510 : 513 - 541
  • [4] ERDOS P, 1961, B RES COUNC ISRAEL, VF 10, P41
  • [5] A combinatorial problem on finite Abelian groups
    Gao, WD
    [J]. JOURNAL OF NUMBER THEORY, 1996, 58 (01) : 100 - 103
  • [6] Erdos-Ginzburg-Ziv theorem and Noether number for Cm ∝φ Cmn
    Han, Dongchun
    Zhang, Hanbin
    [J]. JOURNAL OF NUMBER THEORY, 2019, 198 : 159 - 175
  • [7] On Erdos-Ginzburg-ZIV inverse theorems for dihedral and dicyclic groups
    Oh, Jun Seok
    Zhong, Qinghai
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2020, 238 (02) : 715 - 743
  • [8] Olson J., 1977, Number Theory and Algebra, P215
  • [9] Olson J.E., 1969, J NUMBER THEORY, V1, P195
  • [10] ON A CONJECTURE OF ZHUANG AND GAO
    Qu, Yongke
    Li, Yuanlin
    [J]. COLLOQUIUM MATHEMATICUM, 2023, 171 (01) : 113 - 126