Mechanical, Electrical, and Glass Transition Behavior of Copper-PMMA Composites

被引:2
作者
Poblete, Victor H. H. [1 ]
Alvarez, Mariela P. P. [2 ]
机构
[1] Univ Tecnol Metropolitana, Dept Ciencias Construcc, Dieciocho 390, Santiago 8330378, Chile
[2] Canada Inc, Soc Gen Surveillance SGS, 6490 Vipond Dr, Mississauga, ON L5T 1WB, Canada
关键词
polymer matrix composites (pmcs); particle-reinforced composites; thermal properties; electrical properties; THERMAL-CONDUCTIVITY; PARTICLE-SIZE; POLYMERS; DEPENDENCE; TEMPERATURE; PERCOLATION; TOUGHNESS; MODULUS;
D O I
10.3390/cryst13030368
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
The mechanical, electrical, and glass transition behaviors (Tg) of polymethylmethacrylate (PMMA)-metal systems have been studied. Considering both the particle size and the metal filler concentration, the electrical conductivity showed a clear dependence on the sample thickness to reach percolation. An increase of up to 400% of strain-to-failure for the 2% v/v of nanometric filler composites in the mechanical test was observed. Tg analysis showed a decrease in the glass transition temperature when the increase of nanometric metallic filler reached the limit of 2% v/v. Over this concentration, the Tg values showed a tendency to reach the original value of the polymeric matrix without conductive filler. For the 20% v/v micrometric filler composites, the strain-to-failure increased up to 58%, but in the Tg analysis of this composite, no relevant changes were observed when the micrometric metallic filler was increased.
引用
收藏
页数:13
相关论文
共 54 条
[1]   Effect of Cu Ions Implantation on Structural, Electronic, Optical and Dielectric Properties of Polymethyl Methacrylate (PMMA) [J].
Akhtar, Athar N. ;
Murtaza, G. ;
Shafique, M. Ahsan ;
Haidyrah, Ahmed S. .
POLYMERS, 2021, 13 (06)
[2]  
[Anonymous], 1999, Standard ASTM D 257-99
[3]  
[Anonymous], 1966, D79266 ASTM
[4]  
Ash B., 2001, MATER RES SOC S P, V661, DOI [10.1557/PROC-661-KK2.10, DOI 10.1557/PROC-661-KK2.10]
[5]   Mechanical properties of Al2O3/polymethylmethacrylate nanocomposites [J].
Ash, BJ ;
Rogers, DF ;
Wiegand, CJ ;
Schadler, LS ;
Siegel, RW ;
Benicewicz, BC ;
Apple, T .
POLYMER COMPOSITES, 2002, 23 (06) :1014-1025
[6]   Glass transition behavior of alumina/polymethylmethacrylate nanocomposites [J].
Ash, BJ ;
Schadler, LS ;
Siegel, RW .
MATERIALS LETTERS, 2002, 55 (1-2) :83-87
[7]   Toughness mechanism in semi-crystalline polymer blends: II. High-density polyethylene toughened with calcium carbonate filler particles [J].
Bartczak, Z ;
Argon, AS ;
Cohen, RE ;
Weinberg, M .
POLYMER, 1999, 40 (09) :2347-2365
[8]   Tailoring of thermomechanical properties of thermoplastic nanocomposites by surface modification of nanoscale silica particles [J].
Becker, C ;
Krug, H ;
Schmidt, H .
BETTER CERAMICS THROUGH CHEMISTRY VII: ORGANIC/INORGANIC HYBRID MATERIALS, 1996, 435 :237-242
[9]  
Bhattacharya S., 1986, PROPERTIES APPL
[10]   Temperature and time dependence of electrical and mechanical durability of LDPE/diamond composites [J].
Boydag, FS ;
Özcanli, YL ;
Alekberov, VA ;
Hikmet, I .
COMPOSITES PART B-ENGINEERING, 2006, 37 (2-3) :249-254