The Use of Sensors in Blood-Brain Barrier-on-a-Chip Devices: Current Practice and Future Directions

被引:13
作者
Kincses, Andras [1 ]
Vigh, Judit P. P. [1 ,2 ]
Petrovszki, Daniel [1 ,3 ]
Valkai, Sandor [1 ]
Kocsis, Anna E. E. [1 ]
Walter, Fruzsina R. R. [1 ]
Lin, Hung-Yin [4 ]
Jan, Jeng-Shiung [5 ]
Deli, Maria A. [1 ]
Der, Andras [1 ]
机构
[1] Biol Res Ctr, Inst Biophys, H-6726 Szeged, Hungary
[2] Univ Szeged, Doctoral Sch Biol, H-6720 Szeged, Hungary
[3] Univ Szeged, Doctoral Sch Multidisciplinary Med Sci, H-6720 Szeged, Hungary
[4] Natl Univ Kaohsiung, Dept Chem & Mat Engn, Kaohsiung 81148, Taiwan
[5] Natl Cheng Kung Univ, Dept Chem Engn, Tainan 70101, Taiwan
来源
BIOSENSORS-BASEL | 2023年 / 13卷 / 03期
关键词
biosensor; blood-brain barrier; cell surface charge; chemosensor; electrical impedance spectroscopy; optical sensor; organ-on-a-chip; streaming potential; transendothelial electrical resistance; OPTICAL BIOSENSORS; DRUG PERMEABILITY; MODEL; PLATFORM; QUANTIFICATION; EXTRACTION; TRANSPORT; PROTEINS; MEDICINE; LYSOZYME;
D O I
10.3390/bios13030357
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The application of lab-on-a-chip technologies in in vitro cell culturing swiftly resulted in improved models of human organs compared to static culture insert-based ones. These chip devices provide controlled cell culture environments to mimic physiological functions and properties. Models of the blood-brain barrier (BBB) especially profited from this advanced technological approach. The BBB represents the tightest endothelial barrier within the vasculature with high electric resistance and low passive permeability, providing a controlled interface between the circulation and the brain. The multi-cell type dynamic BBB-on-chip models are in demand in several fields as alternatives to expensive animal studies or static culture inserts methods. Their combination with integrated biosensors provides real-time and noninvasive monitoring of the integrity of the BBB and of the presence and concentration of agents contributing to the physiological and metabolic functions and pathologies. In this review, we describe built-in sensors to characterize BBB models via quasi-direct current and electrical impedance measurements, as well as the different types of biosensors for the detection of metabolites, drugs, or toxic agents. We also give an outlook on the future of the field, with potential combinations of existing methods and possible improvements of current techniques.
引用
收藏
页数:17
相关论文
共 107 条
[1]   Microengineered human blood-brain barrier platform for understanding nanoparticle transport mechanisms [J].
Ahn, Song Ih ;
Sei, Yoshitaka J. ;
Park, Hyun-Ji ;
Kim, Jinhwan ;
Ryu, Yujung ;
Choi, Jeongmoon J. ;
Sung, Hak-Joon ;
MacDonald, Tobey J. ;
Levey, Allan, I ;
Kim, YongTae .
NATURE COMMUNICATIONS, 2020, 11 (01)
[2]   Molecularly imprinted polymer-based extended-gate field-effect transistor (EG-FET) chemosensor for selective determination of matrix metalloproteinase-1 (MMP-1) protein [J].
Bartold, Katarzyna ;
Iskierko, Zofia ;
Borowicz, Pawel ;
Noworyta, Krzysztof ;
Lin, Chu-Yun ;
Kalecki, Jakub ;
Sharma, Piyush Sindhu ;
Lin, Hung-Yin ;
Kutner, Wlodzimierz .
BIOSENSORS & BIOELECTRONICS, 2022, 208
[3]   Molecularly imprinted materials for biomedical sensing [J].
Batista, Alex D. ;
Silva, Weida R. ;
Mizaikoff, Boris .
Batista, Alex D. (alexbatista@ufu.br); Batista, Alex D. (alexbatista@ufu.br), 1600, Blackwell Publishing Ltd (04)
[4]   Molecularly Imprinted Polymers [J].
BelBruno, Joseph J. .
CHEMICAL REVIEWS, 2019, 119 (01) :94-119
[5]   Enzyme based amperometric biosensors [J].
Bollella, Paolo ;
Gorton, Lo .
CURRENT OPINION IN ELECTROCHEMISTRY, 2018, 10 :157-173
[6]   A multiple-channel, multiple-assay platform for characterization of full-range shear stress effects on vascular endothelial cells [J].
Booth, R. ;
Noh, S. ;
Kim, H. .
LAB ON A CHIP, 2014, 14 (11) :1880-1890
[7]   Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB) [J].
Booth, Ross ;
Kim, Hanseup .
LAB ON A CHIP, 2012, 12 (10) :1784-1792
[8]   Measuring barrier function in organ-on-chips with cleanroom-free integration of multiplexable electrodes [J].
Bossink, Elsbeth G. B. M. ;
Zakharova, Mariia ;
de Bruijn, Douwe S. ;
Odijk, Mathieu ;
Segerink, Loes I. .
LAB ON A CHIP, 2021, 21 (10) :2040-2049
[9]   Metabolic consequences of inflammatory disruption of the blood-brain barrier in an organ-on-chip model of the human neurovascular unit [J].
Brown, Jacquelyn A. ;
Codreanu, Simona G. ;
Shi, Mingjian ;
Sherrod, Stacy D. ;
Markov, Dmitry A. ;
Neely, M. Diana ;
Britt, Clayton M. ;
Hoilett, Orlando S. ;
Reiserer, Ronald S. ;
Samson, Philip C. ;
McCawley, Lisa J. ;
Webb, Donna J. ;
Bowman, Aaron B. ;
McLean, John A. ;
Wikswo, John P. .
JOURNAL OF NEUROINFLAMMATION, 2016, 13
[10]   Recreating blood-brain barrier physiology and structure on chip: A novel neurovascular microfluidic bioreactor [J].
Brown, Jacquelyn A. ;
Pensabene, Virginia ;
Markov, Dmitry A. ;
Allwardt, Vanessa ;
Neely, M. Diana ;
Shi, Mingjian ;
Britt, Clayton M. ;
Hoilett, Orlando S. ;
Yang, Qing ;
Brewer, Bryson M. ;
Samson, Philip C. ;
McCawley, Lisa J. ;
May, James M. ;
Webb, Donna J. ;
Li, Deyu ;
Bowman, Aaron B. ;
Reiserer, Ronald S. ;
Wikswo, John P. .
BIOMICROFLUIDICS, 2015, 9 (05)