Mittag-Leffler Functions in Discrete Time

被引:3
作者
Atici, Ferhan M. [1 ]
Chang, Samuel [2 ]
Jonnalagadda, Jagan Mohan [3 ]
机构
[1] Western Kentucky Univ, Dept Math, Bowling Green, KY 42101 USA
[2] Univ Chicago, Booth Sch Business, Chicago, IL 60637 USA
[3] Birla Inst Technol & Sci Pilani, Dept Math, Hyderabad 500078, Telangana, India
关键词
discrete Mittag-Leffler function; matrix Mittag-Leffler function; nabla operator; fractional h-discrete calculus; FRACTIONAL CALCULUS;
D O I
10.3390/fractalfract7030254
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give an efficient way to calculate the values of the Mittag-Leffler (h-ML) function defined in discrete time hN, where h>0 is a real number. We construct a matrix equation that represents an iteration scheme obtained from a fractional h-difference equation with an initial condition. Fractional h-discrete operators are defined according to the Nabla operator and the Riemann-Liouville definition. Some figures and examples are given to illustrate this new calculation technique for the h-ML function in discrete time. The h-ML function with a square matrix variable in a square matrix form is also given after proving the Putzer algorithm.
引用
收藏
页数:17
相关论文
共 35 条
[1]  
Adel A.A., 2023, RACSAM REV R ACAD A, V7, P175
[2]  
[Anonymous], 2000, Fract Calc Appl Anal, DOI DOI 10.1016/J.JCP.2009.01.014)
[3]  
Atangana A, 2015, FRACTIONAL DYNAMICS, P174
[4]   An eigenvalue problem in fractional h-discrete calculus [J].
Atici, F. M. ;
Jonnalagadda, J. M. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (02) :630-647
[5]  
Atici F.M., 2020, Comput. Math. Biophys., V8, P114
[6]  
Atici F.M., 2020, INT J DIFFER EQU SPE, V15, P281
[7]  
Atici FM., 2021, FRACT DIFFER CALC, V11, P147, DOI [10.7153/fdc-2021-11-10, DOI 10.7153/FDC-2021-11-10]
[8]   Finite Time Stability of Fractional Order Systems of Neutral Type [J].
Ben Makhlouf, Abdellatif ;
Baleanu, Dumitru .
FRACTAL AND FRACTIONAL, 2022, 6 (06)
[9]   Computing the Matrix Mittag-Leffler Function with Applications to Fractional Calculus [J].
Garrappa, Roberto ;
Popolizio, Marina .
JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (01) :129-153
[10]   NUMERICAL EVALUATION OF TWO AND THREE PARAMETER MITTAG-LEFFLER FUNCTIONS [J].
Garrappa, Roberto .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (03) :1350-1369