Characterizing categoricity in several classes of modules

被引:1
作者
Mazari-Armida, Marcos [1 ]
机构
[1] Univ Colorado Boulder, Dept Math, Boulder, CO 80309 USA
关键词
Categoricity; Strongly indecomposable modules; Semisimple modules; Absolutely pure modules; Flat modules; Morley?s categoricity theorem; Shelah?s categoricity conjecture; Abstract elementary classes; NON-ELEMENTARY CLASSES; CLASSIFICATION;
D O I
10.1016/j.jalgebra.2022.10.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the condition of being categorical in a tail of cardinals can be characterized algebraically for several classes of modules. Theorem 0.1. Assume R is an associative ring with unity. (1) The class of locally pure-injective R -modules is A -categorical in all A > card(R) + aleph 0 if and only if R similar to= Mn(D) for D a division ring and n > 1. (2) The class of flat R -modules is A -categorical in all A > card(R) + aleph 0 if and only if R similar to= Mn(k) for k a local ring such that its maximal ideal is left T -nilpotent and n > 1. (3) Assume R is a commutative ring. The class of absolutely pure R -modules is A -categorical in all A > card(R) + aleph 0 if and only if R is a local artinian ring. We show that in the above results it is enough to assume A- categoricity in some big cardinal A. This shows that Shelah's Categoricity Conjecture holds for the class of locally pure-injective modules, flat modules and absolutely pure modules. These classes are not first-order axiomatizable for arbitrary rings.We provide rings such that the class of flat modules is categorical in a tail of cardinals but it is not first-order axiomatizable. (c) 2022 Published by Elsevier Inc.
引用
收藏
页码:382 / 401
页数:20
相关论文
共 36 条
[1]   COMPARISON OF SOME PURITIES, FLATNESSES AND INJECTIVITIES [J].
Al-Kawarit, Walid ;
Couchot, Francois .
COMMUNICATIONS IN ALGEBRA, 2011, 39 (10) :3879-3896
[2]  
Atiyah M. F., 1969, Introduction to commutative algebra
[3]  
Baldwin John, 2009, Categoricity
[4]  
Baldwin John, 1973, ALGEBR UNIV, V3, P98
[5]   New characterization of Σ-injective modules [J].
Beidar, K. I. ;
Jain, S. K. ;
Srivastava, Ashish K. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (10) :3461-3466
[6]   Ikeda-Nakayama rings [J].
Camillo, V ;
Nicholson, WK ;
Yousif, MF .
JOURNAL OF ALGEBRA, 2000, 226 (02) :1001-1010
[7]   HOMOGENEOUS UNIVERSAL MODULES [J].
EKLOF, PC .
MATHEMATICA SCANDINAVICA, 1971, 29 (02) :187-&
[8]  
Facchini A., 1998, MODULE THEORY ENDOMO
[9]  
Givant Steven, 1979, ANN MATH LOG, V17, P91
[10]  
Givant Steven, 1978, ANN MATH LOG, V15, P1