Purification, Characterization and Bioactivities of Polysaccharides Extracted from Safflower (Carthamus tinctorius L.)

被引:11
|
作者
Wang, Qiongqiong [1 ]
Liu, Shiqi [1 ]
Xu, Long [2 ]
Du, Bin [3 ]
Song, Lijun [1 ]
机构
[1] Hebei Normal Univ Sci & Technol, Coll Food Sci & Technol, Qinhuangdao 066600, Peoples R China
[2] Henan Agr Univ, Coll Food Sci & Technol, Zhengzhou 450002, Peoples R China
[3] Hebei Normal Univ Sci & Technol, Hebei Key Lab Nat Prod Act Components & Funct, Qinhuangdao 066004, Peoples R China
来源
MOLECULES | 2023年 / 28卷 / 02期
基金
中国国家自然科学基金;
关键词
safflower; polysaccharides; structures characterization; physiological activities; BIOLOGICAL-ACTIVITIES; PHYSICOCHEMICAL PROPERTIES; STRUCTURAL-PROPERTIES; CELL APOPTOSIS; ANTIOXIDANT; INHIBITION;
D O I
10.3390/molecules28020596
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Polysaccharides are the main bioactive components in safflower. In this study, safflower polysaccharides (SPs) were extracted by ultrasonic assisted extraction, and four purified safflower polysaccharide fractions (named SSP1, SSP2, SSP3, and SSP4, respectively) were obtained. The physicochemical properties and in vitro physiological activities of the four fractions were investigated. The molecular weights (M-W) of the SSPs were 38.03 kDa, 43.17 kDa, 54.49 kDa, and 76.92 kDa, respectively. Glucuronic acid, galactose acid, glucose, galactose, and arabinose were the main monosaccharides. The Fourier transform infrared spectroscopy (FT-IR) indicated that the polysaccharides had alpha- and beta-glycosidic bonds. Nuclear magnetic resonance (NMR) analysis showed that SSP1 had 6 different types of glycosidic bonds, while SSP3 had 8 different types. SSP3 exhibited relatively higher ABTS(+) scavenging activity, Fe+3-reduction activity, and antiproliferative activity. The results will offer a theoretical framework for the use of SPs in the industry of functional foods and medications.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Selection for drought resistance in safflower (Carthamus tinctorius L.) cultivars
    Golparvar, Ahmad Reza
    Madani, Hamid
    Ghasemi-Pirbalouti, Abdollah
    RESEARCH ON CROPS, 2009, 10 (03) : 582 - 585
  • [23] Grain yield stability of spring safflower (Carthamus tinctorius L.)
    Mohammadi, Reza
    Pourdad, Sayyed Saeid
    Amri, Ahmed
    AUSTRALIAN JOURNAL OF AGRICULTURAL RESEARCH, 2008, 59 (06): : 546 - 553
  • [24] The complete chloroplast genome sequence of Safflower (Carthamus tinctorius L.)
    Lu, Chaolong
    Shen, Qi
    Yang, Jun
    Wang, Bo
    Song, Chi
    MITOCHONDRIAL DNA PART A, 2016, 27 (05) : 3351 - 3353
  • [25] Inheritance of flower colour and spinelessness in safflower (Carthamus tinctorius L.)
    P. Golkar
    A. Arzani
    A. M. Rezaei
    Journal of Genetics, 2010, 89 : 259 - 262
  • [26] SAFFLOWER (Carthamus tinctorius L.) RESPONSE TO DRIFT RATES OF GLYPHOSATE
    Asav, Unal
    ROMANIAN AGRICULTURAL RESEARCH, 2022, 39
  • [27] Chemical Structures and Antioxidant Activities of Polysaccharides from Carthamus tinctorius L.
    Lin, Dan
    Xu, Cheng-Jian
    Liu, Yang
    Zhou, Yu
    Xiong, Shuang-Li
    Wu, Hua-Chang
    Deng, Jing
    Yi, Yu-Wen
    Qiao, Ming-Feng
    Xiao, Hang
    Chan, Sook-Wah
    Lu, Yi
    POLYMERS, 2022, 14 (17)
  • [28] Antioxidative compounds isolated from safflower (Carthamus tinctorius L.) oil cake
    Zhang, HL
    Nagatsu, A
    Watanabe, T
    Sakakibara, J
    Okuyama, H
    CHEMICAL & PHARMACEUTICAL BULLETIN, 1997, 45 (12) : 1910 - 1914
  • [29] Colours Obtained from Safflower (Carthamus tinctorius L.) Types and Their Fastness Values
    Kayabasi, N.
    Basalma, D.
    Sanli, H. S.
    ASIAN JOURNAL OF CHEMISTRY, 2012, 24 (05) : 2003 - 2006
  • [30] A Review of Fatty Acids and Genetic Characterization of Safflower(Carthamus Tinctorius L.) Seed Oil
    Lei Liu
    Ling-Liang Guan
    Yu-Xia Yang
    WorldJournalofTraditionalChineseMedicine, 2016, 2 (02) : 48 - 52