Residual-based a posteriori error estimates for nonconforming finite element approximation to parabolic interface problems

被引:0
作者
Ray, Tanushree [1 ]
Sinha, Rajen Kumar [1 ,2 ]
机构
[1] Indian Inst Technol Guwahati, Dept Math, Gauhati, India
[2] Indian Inst Technol Guwahati, Dept Math, Gauhati 781039, India
关键词
a posteriori error estimate; lower bound; nonconforming elements; parabolic interface problem; upper bound; ELLIPTIC-EQUATIONS; CONVERGENCE;
D O I
10.1002/num.22994
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we derive a residual-based a posteriori error estimates for nonconforming finite element approximation to parabolic interface problems. The present approach does not involve the Helmholtz decomposition while analyzing the reliability of the estimator. The constants involved in the estimators are independent of the jump of the diffusion coefficient across the interface, and the quasi-monotonocity assumption on the diffusion coefficient is relaxed. The reliability bound of the estimator consists of the element residual, the edge flux jump and the edge solution jump. The efficiency of the estimator is analyzed by employing a coarsening strategy introduced by Chen and Feng's study. We derive both global upper bound and a local lower bound for the error and an adaptive space-time algorithm is prescribed using the derived estimators. Numerical results illustrating the behavior of the estimators are provided.
引用
收藏
页码:2935 / 2962
页数:28
相关论文
共 25 条
[1]   Robust a posteriori error estimation for nonconforming finite element approximation [J].
Ainsworth, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 42 (06) :2320-2341
[2]  
[Anonymous], 1996, A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques
[3]   FINITE ELEMENT METHOD FOR ELLIPTIC EQUATIONS WITH DISCONTINUOUS COEFFICIENTS [J].
BABUSKA, I .
COMPUTING, 1970, 5 (03) :207-&
[4]  
Bernardi C, 2000, NUMER MATH, V85, P579, DOI 10.1007/s002110000135
[5]   Robust A posteriori error estimates for finite element discretizations of the heat equation with discontinuous coefficients [J].
Berrone, Stefano .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2006, 40 (06) :991-1021
[6]   RESIDUAL-BASED A POSTERIORI ERROR ESTIMATE FOR INTERFACE PROBLEMS: NONCONFORMING LINEAR ELEMENTS [J].
Cai, Zhiqiang ;
He, Cuiyu ;
Zhang, Shun .
MATHEMATICS OF COMPUTATION, 2017, 86 (304) :617-636
[7]   DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS FOR INTERFACE PROBLEMS: A PRIORI AND A POSTERIORI ERROR ESTIMATIONS [J].
Cai, Zhiqiang ;
Ye, Xiu ;
Zhang, Shun .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (05) :1761-1787
[8]   RECOVERY-BASED ERROR ESTIMATORS FOR INTERFACE PROBLEMS: MIXED AND NONCONFORMING FINITE ELEMENTS [J].
Cai, Zhiqiang ;
Zhang, Shun .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (01) :30-52
[9]   A posteriori error estimates for nonconforming finite element methods [J].
Carstensen, C ;
Bartels, S ;
Jansche, S .
NUMERISCHE MATHEMATIK, 2002, 92 (02) :233-256
[10]   Finite element methods and their convergence for elliptic and parabolic interface problems [J].
Chen, ZM ;
Zou, J .
NUMERISCHE MATHEMATIK, 1998, 79 (02) :175-202