Interactions between H2O2 and dissolved organic matter during granular activated carbon-based residual H2O2 quenching from the upstream UV/H2O2 process

被引:5
|
作者
Kang, Yaoyao [1 ]
Lian, Junfeng [1 ,2 ]
Zhu, Yichun [1 ,2 ]
Liu, Zuwen [1 ,2 ]
Li, Wentao [3 ]
Dong, Huiyu [3 ]
Wang, Yuanyue [4 ]
Zeng, Jinfeng [5 ]
Qiang, Zhimin [3 ]
机构
[1] Jiangxi Univ Sci & Technol, Jiangxi Prov Key Lab Environm Geotechnol & Engn D, Ganzhou 341000, Peoples R China
[2] Jiangxi Univ Sci & Technol, Ganzhou Key Lab Basin Pollut Simulat & Control, Ganzhou 341000, Peoples R China
[3] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Key Lab Drinking Water Sci & Technol, Beijing 100085, Peoples R China
[4] CECEP Environm Protect Investment Dev Jiangxi Co, Nanchang 330006, Jiangxi, Peoples R China
[5] Hydrol & Water Resources Monitoring Ctr Ganjiang, Ganzhou 341000, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Granular activated carbon; H2O2; quenching; Dissolved organic matter; Rapid small-scale column tests; Persistent free radicals; PERSISTENT FREE-RADICALS; HYDROGEN-PEROXIDE; CATALYTIC DECOMPOSITION; DRINKING-WATER; ADSORPTION CAPACITY; GAC ADSORPTION; AQUEOUS OZONE; WASTE-WATER; OXIDATION; CONTAMINANTS;
D O I
10.1016/j.jes.2022.06.041
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Granular activated carbon (GAC) filtration can be employed to synchronously quench residual H2O2 from the upstream UV/H2O2 process and further degrade dissolved organic matter (DOM). In this study, rapid small-scale column tests (RSSCTs) were performed to clarify the mechanisms underlying the interactions between H2O2 and DOM during the GAC-based H2O2 quenching process. It was observed that GAC can catalytically decompose H2O2, with a long-lasting high efficiency (>80% for approximately 50,000 empty-bed volumes). DOM inhibited GAC-based H2O2 quenching via a pore-blocking effect, especially at high concentrations (10 mg/L), with the adsorbed DOM molecules being oxidized by the continuously generated center dot OH; this further deteriorated the H2O2 quenching efficiency. In batch experiments, H2O2 could enhance DOM adsorption by GAC; however, in RSSCTs, it deteriorated DOM removal. This observation could be attributed to the different .OH exposure in these two systems. It was also observed that aging with H2O2 and DOM altered the morphology, specific surface area, pore volume, and the surface functional groups of GAC, owing to the oxidation effect of H2O2 and center dot OH on the GAC surface as well as the effect of DOM. Additionally, the changes in the content of persistent free radicals in the GAC samples were insignificant following different aging processes. This work contributes to enhancing understanding regarding the UV/H2O2-GAC filtration scheme, and promoting the application in drinking water treatment. (C) 2022 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.
引用
收藏
页码:139 / 149
页数:11
相关论文
共 50 条
  • [1] Interactions between H2O2 and dissolved organic matter during granular activated carbon-based residual H2O2 quenching from the upstream UV/H2O2 process
    Yaoyao Kang
    Junfeng Lian
    Yichun Zhu
    Zuwen Liu
    Wentao Li
    Huiyu Dong
    Yuanyue Wang
    Jinfeng Zeng
    Zhimin Qiang
    Journal of Environmental Sciences, 2023, (06) : 139 - 149
  • [2] Quenching residual H2O2 from UV/H2O2 with granular activated carbon: A significant impact of bicarbonate
    Zeng J.
    Zhang M.
    Qin X.
    He Y.
    Liu X.
    Zhu Y.
    Liu Z.
    Li W.
    Dong H.
    Qiang Z.
    Lian J.
    Chemosphere, 2024, 354
  • [3] Degradation of Calmagite by H2O2/UV/US, H2O2/US, H2O2, and US process
    Menek, Necati
    Ugurlar, Ceren
    Ucarh, Okan
    Karaman, Yeliz
    Omanovic, Sasha
    Ghasemian, Saloumeh
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (05) : 4127 - 4135
  • [4] Effect of granular activated carbon type and age on quenching H2O2 residuals after UV/H2O2 drinking water treatment
    Li, Jinghong
    Zamyadi, Arash
    Hofmann, Ron
    JOURNAL OF WATER SUPPLY RESEARCH AND TECHNOLOGY-AQUA, 2016, 65 (01): : 28 - 36
  • [5] Degradation of melatonin by UV, UV/H2O2, Fe2+/H2O2 and UV/Fe2+/H2O2 processes
    Xu, Xiang-Rong
    Li, Xiao-Yan
    Li, Xiang-Zhong
    Li, Hua-Bin
    SEPARATION AND PURIFICATION TECHNOLOGY, 2009, 68 (02) : 261 - 266
  • [6] The UV/H2O2 process based on H2O2 in-situ generation for water disinfection
    Zhao, Qian
    Li, Nan
    Liao, Chengmei
    Tian, Lili
    An, Jingkun
    Wang, Xin
    JOURNAL OF HAZARDOUS MATERIALS LETTERS, 2021, 2
  • [7] H2O2/O-3, H2O2/UV AND H2O2/FE2+ PROCESSES FOR THE OXIDATION OF HAZARDOUS WASTES
    SCHULTE, P
    BAYER, A
    KUHN, F
    LUY, T
    VOLKMER, M
    OZONE-SCIENCE & ENGINEERING, 1995, 17 (02) : 119 - 134
  • [8] Comparative Study of Reactive Dyes Oxidation by H2O2/UV, H2O2/UV/Fe2+ and H2O2/UV/Fe° Processes
    Skodic, Lidija
    Vajnhandl, Simona
    Valh, Julija Volmajer
    Zeljko, Tina
    Voncina, Bojana
    Lobnik, Aleksandra
    OZONE-SCIENCE & ENGINEERING, 2017, 39 (01) : 14 - 23
  • [9] Decolorization and Mineralization of Reactive Dyes, by the H2O2/UV Process With Electrochemically Produced H2O2
    Jeric, Tina
    Bisselink, Roel J. M.
    van Tongeren, Willy
    Le Marechal, Alenka M.
    ACTA CHIMICA SLOVENICA, 2013, 60 (03) : 666 - 672
  • [10] Comparison of H2O2/UV, H2O2/O3 and H2O2/Fe2+ processes for the decolorisation of vinylsulphone reactive dyes
    Kurbus, T
    Le Marechal, AM
    Voncina, DB
    DYES AND PIGMENTS, 2003, 58 (03) : 245 - 252