LEAVITT PATH ALGEBRAS OF WEIGHTED AND SEPARATED GRAPHS

被引:2
作者
Ara, Pere [1 ,2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, Edifici Cc, Cerdanyola Del Valles 08193, Barcelona, Spain
[2] Ctr Recerca Matemat, Edifici Cc,Campus Bellaterra, Cerdanyola Del Valles 08193, Barcelona, Spain
关键词
weighted graph; separated graph; Leavitt path algebra; ideal; MODULES;
D O I
10.1017/S1446788722000155
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that Leavitt path algebras of weighted graphs and Leavitt path algebras of separated graphs are intimately related. We prove that any Leavitt path algebra L(E, omega) of a row-finite vertex weighted graph (E, omega) is *-isomorphic to the lower Leavitt path algebra of a certain bipartite separated graph (E(omega), C(omega)). For a general locally finite weighted graph (E, omega), we show that a certain quotient L-1(E, omega) of L(E, omega) is *-isomorphic to an upper Leavitt path algebra of another bipartite separated graph (E(w)(1), C(w)(1)). We furthermore introduce the algebra L-ab(E, w), which is a universal tame *-algebra generated by a set of partial isometrics. We draw some consequences of our results for the structure of ideals of L(E, omega), and we study in detail two different maximal ideals of the Leavitt algebra L(m, n).
引用
收藏
页码:1 / 25
页数:25
相关论文
共 17 条
[1]  
Abrams G., 2022, ARXIV211209218V1
[2]  
ABRAMS G, 2017, LECT NOTES MATH, V2191, P1
[3]   Multipliers of Von Neumann regular rings [J].
Ara, P ;
Perera, F .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (07) :3359-3385
[4]   Direct sum decompositions of modules, almost trace ideals, and pullbacks of monoids [J].
Ara, Pere ;
Facchini, Alberto .
FORUM MATHEMATICUM, 2006, 18 (03) :365-389
[5]   Convex subshifts, separated Bratteli diagrams, and ideal structure of tame separated graph algebras [J].
Ara, Pere ;
Lolk, Matias .
ADVANCES IN MATHEMATICS, 2018, 328 :367-435
[6]   Dynamical systems associated to separated graphs, graph algebras, and paradoxical decompositions [J].
Ara, Pere ;
Exel, Ruy .
ADVANCES IN MATHEMATICS, 2014, 252 :748-804
[7]   TENSOR PRODUCTS OF LEAVITT PATH ALGEBRAS [J].
Ara, Pere ;
Cortinas, Guillermo .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (08) :2629-2639
[8]   Leavitt path algebras of separated graphs [J].
Ara, Pere ;
Goodearl, Kenneth R. .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 669 :165-224
[9]   COPRODUCTS AND SOME UNIVERSAL RING CONSTRUCTIONS [J].
BERGMAN, GM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 200 :33-88
[10]  
Exel Ruy, 2017, Mathematical Surveys and Monographs, V224, DOI 10.1090/surv/224