A Canonical Neighborhood Theorem for Mean Curvature Flow in Higher Codimension

被引:0
作者
Naff, Keaton [1 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
关键词
CONVEX ANCIENT SOLUTIONS; RICCI FLOW; UNIQUENESS; SINGULARITIES; SURFACES; SURGERY;
D O I
10.1093/imrn/rnac163
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In dimensions n >= 5, we prove a canonical neighborhood theorem for the mean curvature flow of compact n-dimensional submanifolds in R-N satisfying a pinching condition vertical bar A vertical bar(2) < c vertical bar H vertical bar(2) for c = min{3(n+1)/2n(n+2), 1/n-2}.
引用
收藏
页码:11499 / 11536
页数:38
相关论文
共 30 条
[1]  
Andrews B, 2010, J DIFFER GEOM, V85, P357
[2]   Uniqueness of two-convex closed ancient solutions to the mean curvature flow [J].
Angenent, Sigurd ;
Daskalopoulos, Panagiota ;
Sesum, Natasa .
ANNALS OF MATHEMATICS, 2020, 192 (02) :353-436
[3]   UNIQUE ASYMPTOTICS OF ANCIENT CONVEX MEAN CURVATURE FLOW SOLUTIONS [J].
Angenent, Sigurd ;
Daskalopoulos, Panagiota ;
Sesum, Natasa .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2019, 111 (03) :381-455
[4]  
[Anonymous], 2002, PREPRINT
[5]  
BRENDLE S, 2010, GRADUATE STUDIES MAT, V111
[6]   Uniqueness of convex ancient solutions to mean curvature flow in higher dimensions [J].
Brendle, Simon ;
Choi, Kyeongsu .
GEOMETRY & TOPOLOGY, 2021, 25 (05) :2195-2234
[7]   Uniqueness of compact ancient solutions to three-dimensional Ricci flow [J].
Brendle, Simon ;
Daskalopoulos, Panagiota ;
Sesum, Natasa .
INVENTIONES MATHEMATICAE, 2021, 226 (02) :579-651
[8]   Ancient solutions to the Ricci flow in dimension 3 [J].
Brendle, Simon .
ACTA MATHEMATICA, 2020, 225 (01) :1-102
[9]   Ricci flow with surgery on manifolds with positive isotropic curvature [J].
Brendle, Simon .
ANNALS OF MATHEMATICS, 2019, 190 (02) :465-559
[10]  
Brendle S, 2019, INVENT MATH, V217, P35, DOI 10.1007/s00222-019-00859-4