Existence of two non-zero weak solutions for a p(•)-biharmonic problem with Navier boundary conditions

被引:7
作者
Bonanno, Gabriele [1 ]
Chinni, Antonia [1 ]
Radulescu, Vicentiu D. [2 ,3 ,4 ,5 ,6 ]
机构
[1] Univ Messina, Dept Engn, I-98166 Messina, Italy
[2] AGH Univ Sci & Technol, Fac Appl Math, PL-30059 Krakow, Poland
[3] Brno Univ Technol, Fac Elect Engn & Commun, Tech 3058-10, Brno 61600, Czech Republic
[4] Zhejiang Normal Univ, Sch Math, Jinhua 321004, Zhejiang, Peoples R China
[5] Univ Craiova, Dept Math, Craiova 200585, Romania
[6] Romanian Acad, Simion Stoilow Inst Math, 21 Calea Grivitei St, Bucharest 010702, Romania
关键词
p(center dot)-biharmonic-type operators; Navier boundary value problem; variational methods; MULTIPLE SOLUTIONS; VARIABLE EXPONENT; ELLIPTIC PROBLEMS; SPACES; LEBESGUE; THEOREM; DRIVEN;
D O I
10.4171/RLM/1025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the existence of non-trivial weak solutions for some problems with Navier boundary conditions driven by the p(center dot)-biharmonic operator is investigated. The proofs combine variational methods with topological arguments.
引用
收藏
页码:727 / 743
页数:17
相关论文
共 50 条
[41]   Multiple solutions to a class of p(x)-biharmonic differential inclusion problem with no-flux boundary condition [J].
Zhou, Qing-Mei ;
Wang, Ke-Qi .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (04) :1549-1565
[42]   Multiple Solutions for Nonlinear Navier Boundary Systems Involving (p1(x), ... , pn(x))-Biharmonic Problem [J].
Miao, Qing .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2016, 2016
[43]   Infinitely many solutions for a p(x)-triharmonic equation with Navier boundary conditions [J].
Belakhdar, Adnane ;
Belaouidel, Hassan ;
Filali, Mohammed ;
Tsouli, Najib .
JOURNAL OF APPLIED ANALYSIS, 2025, 31 (01) :45-54
[44]   Existence of weak solutions for some local and nonlocal p-Laplacian problem [J].
Allalou, Chakir ;
Hilal, Khalid ;
Temghart, Said Ait .
JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2022, 8 (01) :151-169
[45]   Existence of Multiple Weak Solutions to a Discrete Fractional Boundary Value Problem [J].
Moradi, Shahin ;
Afrouzi, Ghasem A. ;
Graef, John R. .
AXIOMS, 2023, 12 (10)
[46]   Two Weak Solutions for a Singular (p, q)-Laplacian Problem [J].
Behboudi, F. ;
Razani, A. .
FILOMAT, 2019, 33 (11) :3399-3407
[47]   Existence and Nonexistence for Boundary Problem Involving the p-Biharmonic Operator and Singular Nonlinearities [J].
El Mokhtar, Mohammed El Mokhtar Ould .
JOURNAL OF FUNCTION SPACES, 2023, 2023
[48]   INFINITELY MANY SOLUTION FOR A NONLINEAR NAVIER BOUNDARY VALUE PROBLEM INVOLVING THE p-BIHARMONIC [J].
Candito, Pasquale ;
Livrea, Roberto .
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2010, 55 (04) :41-51
[49]   Existence and multiplicity of solutions for a singular problem involving the p-biharmonic operator in RN [J].
Dhifli, Abdelwaheb ;
Alsaedi, Ramzi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 499 (02)
[50]   Existence and multiplicity of weak solutions for a Neumann boundary value problem with the Sturm-Liouville equation [J].
Ranjkesh, Mehrnoush ;
Afrouzi, Ghasem Alizadeh ;
Khademloo, Somayeh .
ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2020, 47 (02) :267-275