Existence of two non-zero weak solutions for a p(•)-biharmonic problem with Navier boundary conditions

被引:7
作者
Bonanno, Gabriele [1 ]
Chinni, Antonia [1 ]
Radulescu, Vicentiu D. [2 ,3 ,4 ,5 ,6 ]
机构
[1] Univ Messina, Dept Engn, I-98166 Messina, Italy
[2] AGH Univ Sci & Technol, Fac Appl Math, PL-30059 Krakow, Poland
[3] Brno Univ Technol, Fac Elect Engn & Commun, Tech 3058-10, Brno 61600, Czech Republic
[4] Zhejiang Normal Univ, Sch Math, Jinhua 321004, Zhejiang, Peoples R China
[5] Univ Craiova, Dept Math, Craiova 200585, Romania
[6] Romanian Acad, Simion Stoilow Inst Math, 21 Calea Grivitei St, Bucharest 010702, Romania
关键词
p(center dot)-biharmonic-type operators; Navier boundary value problem; variational methods; MULTIPLE SOLUTIONS; VARIABLE EXPONENT; ELLIPTIC PROBLEMS; SPACES; LEBESGUE; THEOREM; DRIVEN;
D O I
10.4171/RLM/1025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the existence of non-trivial weak solutions for some problems with Navier boundary conditions driven by the p(center dot)-biharmonic operator is investigated. The proofs combine variational methods with topological arguments.
引用
收藏
页码:727 / 743
页数:17
相关论文
共 50 条
[31]   EXISTENCE OF TWO WEAK SOLUTIONS FOR SOME ELLIPTIC PROBLEMS INVOLVING p(x)-BIHARMONIC OPERATOR [J].
Khodabakhshi, M. E. H. D., I ;
Vaezpour, Seyyed Mansour ;
Hadjian, A. R. M. I. N. .
MISKOLC MATHEMATICAL NOTES, 2023, 24 (02) :829-839
[32]   Infinitely many solutions for a perturbed nonlinear Navier boundary value problem involving the p-biharmonic [J].
Candito, P. ;
Li, L. ;
Livrea, R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (17) :6360-6369
[33]   Three non-zero solutions for a nonlinear eigenvalue problem [J].
Faraci, Francesca ;
Kristaly, Alexandru .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (01) :225-230
[34]   Multiplicity results for p(x)-biharmonic equations with Navier boundary conditions [J].
Heidarkhani, Shapour ;
Ferrara, Massimiliano ;
Salari, Amjad ;
Caristi, Giuseppe .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (11) :1494-1516
[35]   Almost all weak solutions of the weighted p(.)-biharmonic problem [J].
Aydin, Ismail .
JOURNAL OF ANALYSIS, 2024, 32 (01) :171-190
[36]   Almost all weak solutions of the weighted p(.)-biharmonic problem [J].
Ismail Aydın .
The Journal of Analysis, 2024, 32 :171-190
[37]   EXISTENCE OF WEAK SOLUTIONS FOR STEADY FLOWS OF ELECTRORHEOLOGICAL FLUID WITH NAVIER-SLIP TYPE BOUNDARY CONDITIONS [J].
Sin, Cholmin ;
Ri, Sin-Il .
MATHEMATICA BOHEMICA, 2022, 147 (04) :567-585
[38]   Existence results of infinitely many solutions for p(x)-Kirchhoff type triharmonic operator with Navier boundary conditions [J].
Rahal, Belgacem .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 478 (02) :1133-1146
[39]   Existence and Multiplicity of Solutions for Choquard Type Problem Involving p(x)-Biharmonic Operator [J].
Zhang, Jing ;
Hai, Quan .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2024, 50 (06)
[40]   Existence results of nontrivial solutions for a new p(x)-biharmonic problem with weight function [J].
Guo, Wei ;
Yang, Jinfu ;
Zhang, Jiafeng .
AIMS MATHEMATICS, 2022, 7 (05) :8491-8509