Existence of two non-zero weak solutions for a p(•)-biharmonic problem with Navier boundary conditions

被引:7
作者
Bonanno, Gabriele [1 ]
Chinni, Antonia [1 ]
Radulescu, Vicentiu D. [2 ,3 ,4 ,5 ,6 ]
机构
[1] Univ Messina, Dept Engn, I-98166 Messina, Italy
[2] AGH Univ Sci & Technol, Fac Appl Math, PL-30059 Krakow, Poland
[3] Brno Univ Technol, Fac Elect Engn & Commun, Tech 3058-10, Brno 61600, Czech Republic
[4] Zhejiang Normal Univ, Sch Math, Jinhua 321004, Zhejiang, Peoples R China
[5] Univ Craiova, Dept Math, Craiova 200585, Romania
[6] Romanian Acad, Simion Stoilow Inst Math, 21 Calea Grivitei St, Bucharest 010702, Romania
关键词
p(center dot)-biharmonic-type operators; Navier boundary value problem; variational methods; MULTIPLE SOLUTIONS; VARIABLE EXPONENT; ELLIPTIC PROBLEMS; SPACES; LEBESGUE; THEOREM; DRIVEN;
D O I
10.4171/RLM/1025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the existence of non-trivial weak solutions for some problems with Navier boundary conditions driven by the p(center dot)-biharmonic operator is investigated. The proofs combine variational methods with topological arguments.
引用
收藏
页码:727 / 743
页数:17
相关论文
共 50 条
[21]   Existence of non-zero solutions for a Dirichlet problem driven by (p(x),q(x)-Laplacian [J].
Chinni, A. ;
Sciammetta, A. ;
Tornatore, E. .
APPLICABLE ANALYSIS, 2022, 101 (15) :5323-5333
[22]   Existence of Weak Solutions for Weighted Robin Problem Involving p(.)-biharmonic operator [J].
Kulak, Oznur ;
Aydin, Ismail ;
Unal, Cihan .
DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2024, 32 (04) :1159-1174
[23]   The Nehari Manifold Approach Involving a Singular p(x)-Biharmonic Problem with Navier Boundary Conditions [J].
Mbarki, Lamine .
ACTA APPLICANDAE MATHEMATICAE, 2022, 182 (01)
[24]   Existence of weak solutions for a fourth-order Navier boundary value problem [J].
Xu, Jiafa ;
Dong, Wei ;
O'Regan, Donal .
APPLIED MATHEMATICS LETTERS, 2014, 37 :61-66
[25]   Existence of Two Non-zero Weak Solutions for a Nonlinear Navier Boundary Value Problem Involving the p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p$\end{document}-Biharmonic [J].
Gabriele Bonanno ;
Antonia Chinnì ;
Donal O’Regan .
Acta Applicandae Mathematicae, 2020, 166 (1) :1-10
[26]   Non-trivial solutions for a class of (p1, . . . , pn)-biharmonic systems with Navier boundary conditions [J].
Heidarkhani, Shapour .
ANNALES POLONICI MATHEMATICI, 2012, 105 (01) :65-76
[27]   Existence of solutions for a class of biharmonic equations with the Navier boundary value condition [J].
Pei, Ruichang .
BOUNDARY VALUE PROBLEMS, 2012,
[29]   Two Non-Zero Solutions for Elliptic Dirichlet Problems [J].
Bonanno, Gabriele ;
D'Agui, Giuseppina .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2016, 35 (04) :449-464
[30]   A VARIATIONAL APPROACH FOR SOLVING p(x)-BIHARMONIC EQUATIONS WITH NAVIER BOUNDARY CONDITIONS [J].
Heidarkhani, Shapour ;
Afrouzi, Ghasem A. ;
Moradi, Shahin ;
Caristi, Giuseppe .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,