Existence of two non-zero weak solutions for a p(•)-biharmonic problem with Navier boundary conditions

被引:3
作者
Bonanno, Gabriele [1 ]
Chinni, Antonia [1 ]
Radulescu, Vicentiu D. [2 ,3 ,4 ,5 ,6 ]
机构
[1] Univ Messina, Dept Engn, I-98166 Messina, Italy
[2] AGH Univ Sci & Technol, Fac Appl Math, PL-30059 Krakow, Poland
[3] Brno Univ Technol, Fac Elect Engn & Commun, Tech 3058-10, Brno 61600, Czech Republic
[4] Zhejiang Normal Univ, Sch Math, Jinhua 321004, Zhejiang, Peoples R China
[5] Univ Craiova, Dept Math, Craiova 200585, Romania
[6] Romanian Acad, Simion Stoilow Inst Math, 21 Calea Grivitei St, Bucharest 010702, Romania
关键词
p(center dot)-biharmonic-type operators; Navier boundary value problem; variational methods; MULTIPLE SOLUTIONS; VARIABLE EXPONENT; ELLIPTIC PROBLEMS; SPACES; LEBESGUE; THEOREM; DRIVEN;
D O I
10.4171/RLM/1025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the existence of non-trivial weak solutions for some problems with Navier boundary conditions driven by the p(center dot)-biharmonic operator is investigated. The proofs combine variational methods with topological arguments.
引用
收藏
页码:727 / 743
页数:17
相关论文
共 50 条
[1]   Existence of Two Non-zero Weak Solutions for a Nonlinear Navier Boundary Value Problem Involving the p-Biharmonic [J].
Bonanno, Gabriele ;
Chinni, Antonia ;
O'Regan, Donal .
ACTA APPLICANDAE MATHEMATICAE, 2020, 166 (01) :1-10
[2]   Existence of one weak solution for p(x)-biharmonic equations with Navier boundary conditions [J].
Heidarkhani, S. ;
Afrouzi, G. A. ;
Moradi, S. ;
Caristi, G. ;
Ge, Bin .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03)
[3]   On the existence of a weak solution for some singular p(x)-biharmonic equation with Navier boundary conditions [J].
Kefi, Khaled ;
Saoudi, Kamel .
ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) :1171-1183
[4]   On a Kirchhoff Singular p(x)-Biharmonic Problem with Navier Boundary Conditions [J].
Kefi, Khaled ;
Saoudi, Kamel ;
Al-Shomrani, Mohammed Mosa .
ACTA APPLICANDAE MATHEMATICAE, 2020, 170 (01) :661-676
[5]   Existence of Solutions for p(x)-Triharmonic Problem with Navier Boundary Conditions [J].
Zhao, Xiaohuan ;
Miao, Qing .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2025, 32 (01)
[6]   Existence of one weak solution for p(x)-biharmonic equations with Navier boundary conditions [J].
S. Heidarkhani ;
G. A. Afrouzi ;
S. Moradi ;
G. Caristi ;
Bin Ge .
Zeitschrift für angewandte Mathematik und Physik, 2016, 67
[7]   INFINITELY MANY SOLUTIONS TO p(x)-BIHARMONIC PROBLEM WITH NAVIER BOUNDARY CONDITIONS [J].
Zigao Chen .
Annals of Differential Equations, 2014, 30 (03) :272-281
[8]   p(x)-biharmonic problem with Navier boundary conditions [J].
Hammou, Mustapha Ait .
RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2023, 14 (01) :33-44
[9]   Multiple solutions of p-biharmonic equations with Navier boundary conditions [J].
Bisci, Giovanni Molica ;
Repovs, Dusan .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2014, 59 (02) :271-284
[10]   Sequences of Weak Solutions for a Navier Problem Driven by the p(x)-Biharmonic Operator [J].
Cammaroto, Filippo ;
Vilasi, Luca .
MINIMAX THEORY AND ITS APPLICATIONS, 2019, 4 (01) :71-85