Existence of two non-zero weak solutions for a p(•)-biharmonic problem with Navier boundary conditions

被引:3
|
作者
Bonanno, Gabriele [1 ]
Chinni, Antonia [1 ]
Radulescu, Vicentiu D. [2 ,3 ,4 ,5 ,6 ]
机构
[1] Univ Messina, Dept Engn, I-98166 Messina, Italy
[2] AGH Univ Sci & Technol, Fac Appl Math, PL-30059 Krakow, Poland
[3] Brno Univ Technol, Fac Elect Engn & Commun, Tech 3058-10, Brno 61600, Czech Republic
[4] Zhejiang Normal Univ, Sch Math, Jinhua 321004, Zhejiang, Peoples R China
[5] Univ Craiova, Dept Math, Craiova 200585, Romania
[6] Romanian Acad, Simion Stoilow Inst Math, 21 Calea Grivitei St, Bucharest 010702, Romania
关键词
p(center dot)-biharmonic-type operators; Navier boundary value problem; variational methods; MULTIPLE SOLUTIONS; VARIABLE EXPONENT; ELLIPTIC PROBLEMS; SPACES; LEBESGUE; THEOREM; DRIVEN;
D O I
10.4171/RLM/1025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the existence of non-trivial weak solutions for some problems with Navier boundary conditions driven by the p(center dot)-biharmonic operator is investigated. The proofs combine variational methods with topological arguments.
引用
收藏
页码:727 / 743
页数:17
相关论文
共 50 条
  • [1] Existence of Two Non-zero Weak Solutions for a Nonlinear Navier Boundary Value Problem Involving the p-Biharmonic
    Bonanno, Gabriele
    Chinni, Antonia
    O'Regan, Donal
    ACTA APPLICANDAE MATHEMATICAE, 2020, 166 (01) : 1 - 10
  • [2] Existence of one weak solution for p(x)-biharmonic equations with Navier boundary conditions
    Heidarkhani, S.
    Afrouzi, G. A.
    Moradi, S.
    Caristi, G.
    Ge, Bin
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03):
  • [3] On the existence of a weak solution for some singular p(x)-biharmonic equation with Navier boundary conditions
    Kefi, Khaled
    Saoudi, Kamel
    ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) : 1171 - 1183
  • [4] On a Kirchhoff Singular p(x)-Biharmonic Problem with Navier Boundary Conditions
    Kefi, Khaled
    Saoudi, Kamel
    Al-Shomrani, Mohammed Mosa
    ACTA APPLICANDAE MATHEMATICAE, 2020, 170 (01) : 661 - 676
  • [5] Existence of Solutions for p(x)-Triharmonic Problem with Navier Boundary Conditions
    Zhao, Xiaohuan
    Miao, Qing
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2025, 32 (01)
  • [6] Existence of one weak solution for p(x)-biharmonic equations with Navier boundary conditions
    S. Heidarkhani
    G. A. Afrouzi
    S. Moradi
    G. Caristi
    Bin Ge
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [7] INFINITELY MANY SOLUTIONS TO p(x)-BIHARMONIC PROBLEM WITH NAVIER BOUNDARY CONDITIONS
    Zigao Chen
    Annals of Differential Equations, 2014, 30 (03) : 272 - 281
  • [8] p(x)-biharmonic problem with Navier boundary conditions
    Hammou, Mustapha Ait
    RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2023, 14 (01): : 33 - 44
  • [9] Multiple solutions of p-biharmonic equations with Navier boundary conditions
    Bisci, Giovanni Molica
    Repovs, Dusan
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2014, 59 (02) : 271 - 284
  • [10] Sequences of Weak Solutions for a Navier Problem Driven by the p(x)-Biharmonic Operator
    Cammaroto, Filippo
    Vilasi, Luca
    MINIMAX THEORY AND ITS APPLICATIONS, 2019, 4 (01): : 71 - 85