Multi-omics analysis identifies potential microbial and metabolite diagnostic biomarkers of bacterial vaginosis

被引:2
|
作者
Challa, A. [1 ]
Maras, J. S. [2 ]
Nagpal, S. [3 ,4 ,5 ]
Tripathi, G. [2 ]
Taneja, B. [4 ,5 ]
Kachhawa, G. [6 ]
Sood, S. [7 ]
Dhawan, B. [7 ]
Acharya, P. [8 ]
Upadhyay, A. D. [9 ]
Yadav, M. [2 ]
Sharma, R. [4 ,5 ]
Bajpai, M. [10 ]
Gupta, S. [1 ,11 ]
机构
[1] All India Inst Med Sci, Dept Dermatol & Venereol, New Delhi, India
[2] Inst Liver & Biliary Sci, Dept Mol & Cellular Med, New Delhi, India
[3] Tata Consultancy Serv Ltd, TCS Res, Pune, India
[4] CSIR Inst Genom & Integrat Biol, New Delhi, India
[5] Acad Sci & Innovat Res AcSIR, Ghaziabad, India
[6] All India Inst Med Sci, Dept Obstet & Gynaecol, New Delhi, India
[7] All India Inst Med Sci, Dept Microbiol, New Delhi, India
[8] All India Inst Med Sci, Dept Biochem, New Delhi, India
[9] All India Inst Med Sci, Dept Biostat, New Delhi, India
[10] Inst Liver & Biliary Sci, Dept Transfus Med, New Delhi, India
[11] All India Inst Med Sci, Dept Dermatol & Venereol, Room 4064, New Delhi 110029, India
关键词
VAGINAL MICROBIOME; MYCOPLASMA-HOMINIS; GRAM STAIN; WOMEN; ASSOCIATION; COMMUNITIES; LACTOBACILLI; INFECTION; CRITERIA;
D O I
10.1111/jdv.19805
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
BackgroundBacterial vaginosis (BV) is a common clinical manifestation of a perturbed vaginal ecology associated with adverse sexual and reproductive health outcomes if left untreated. The existing diagnostic modalities are either cumbersome or require skilled expertise, warranting alternate tests. Application of machine-learning tools to heterogeneous and high-dimensional multi-omics datasets finds promising potential in data integration and may aid biomarker discovery.ObjectivesThe present study aimed to evaluate the potential of the microbiome and metabolome-derived biomarkers in BV diagnosis. Interpretable machine-learning algorithms were used to evaluate the utility of an integrated-omics-derived classification model.MethodsVaginal samples obtained from reproductive-age group women with (n = 40) and without BV (n = 40) were subjected to 16S rRNA amplicon sequencing and LC-MS-based metabolomics. The vaginal microbiome and metabolome were characterized, and machine-learning analysis was performed to build a classification model using biomarkers with the highest diagnostic accuracy.ResultsMicrobiome-based diagnostic model exhibited a ROC-AUC (10-fold CV) of 0.84 +/- 0.21 and accuracy of 0.79 +/- 0.18, and important features were Aerococcus spp., Mycoplasma hominis, Sneathia spp., Lactobacillus spp., Prevotella spp., Gardnerella spp. and Fannyhessea vaginae. The metabolome-derived model displayed superior performance with a ROC-AUC of 0.97 +/- 0.07 and an accuracy of 0.92 +/- 0.08. Beta-leucine, methylimidazole acetaldehyde, dimethylethanolamine, L-arginine and beta cortol were among key predictive metabolites for BV. A predictive model combining both microbial and metabolite features exhibited a high ROC-AUC of 0.97 +/- 0.07 and accuracy of 0.94 +/- 0.08 with diagnostic performance only slightly superior to the metabolite-based model.ConclusionApplication of machine-learning tools to multi-omics datasets aid biomarker discovery with high predictive performance. Metabolome-derived classification models were observed to have superior diagnostic performance in predicting BV than microbiome-based biomarkers.
引用
收藏
页码:1152 / 1165
页数:14
相关论文
共 50 条
  • [1] An integrated multi-omics analysis identifies protein biomarkers and potential drug targets for psoriatic arthritis
    Cai, Yi-Xin
    Zheng, Dai-Shan
    Chen, Xiao-Li
    Bai, Zhan-Pei
    Zhang, Jinyi
    Deng, Wenhai
    Huang, Xiu-Feng
    COMMUNICATIONS BIOLOGY, 2025, 8 (01)
  • [2] Multi-Omics Data Analysis Identifies Prognostic Biomarkers across Cancers
    Demir Karaman, Ezgi
    Isik, Zerrin
    MEDICAL SCIENCES, 2023, 11 (03)
  • [3] Multi-omics analysis identifies diagnostic circulating biomarkers and potential therapeutic targets, revealing IQGAP1 as an oncogene in gastric cancer
    Chao Deng
    Chenjun Xie
    Zixi Li
    Jie Mei
    Kewei Wang
    npj Precision Oncology, 9 (1)
  • [4] Sequential multi-omics analysis identifies clinical phenotypes and predictive biomarkers for long
    Wang, Kaiming
    Khoramjoo, Mobin
    Srinivasan, Karthik
    Gordon, Paul M. K.
    Mandal, Rupasri
    Jackson, Dana
    Sligl, Wendy
    Grant, Maria B.
    Penninger, Josef M.
    Borchers, Christoph H.
    Wishart, David S.
    Prasad, Vinay
    Oudit, Gavin Y.
    CELL REPORTS MEDICINE, 2023, 4 (11)
  • [5] Multi-Omics Identifies Circulating miRNA and Protein Biomarkers for Facioscapulohumeral Dystrophy
    Heier, Christopher R.
    Zhang, Aiping
    Nguyen, Nhu Y.
    Tully, Christopher B.
    Panigrahi, Aswini
    Gordish-Dressman, Heather
    Pandey, Sachchida Nand
    Guglieri, Michela
    Ryan, Monique M.
    Clemens, Paula R.
    Thangarajh, Mathula
    Webster, Richard
    Smith, Edward C.
    Connolly, Anne M.
    McDonald, Craig M.
    Karachunski, Peter
    Tulinius, Mar
    Harper, Amy
    Mah, Jean K.
    Fiorillo, Alyson A.
    Chen, Yi-Wen
    JOURNAL OF PERSONALIZED MEDICINE, 2020, 10 (04): : 1 - 22
  • [6] Multi-omics analysis identifies drivers of protein phosphorylation
    Zhang, Tian
    Keele, Gregory R.
    Gyuricza, Isabela Gerdes
    Vincent, Matthew
    Brunton, Catherine
    Bell, Timothy A.
    Hock, Pablo
    Shaw, Ginger D.
    Munger, Steven C.
    de Villena, Fernando Pardo-Manuel
    Ferris, Martin T.
    Paulo, Joao A.
    Gygi, Steven P.
    Churchill, Gary A.
    GENOME BIOLOGY, 2023, 24 (01)
  • [7] Multi-omics analysis identifies drivers of protein phosphorylation
    Tian Zhang
    Gregory R. Keele
    Isabela Gerdes Gyuricza
    Matthew Vincent
    Catherine Brunton
    Timothy A. Bell
    Pablo Hock
    Ginger D. Shaw
    Steven C. Munger
    Fernando Pardo-Manuel de Villena
    Martin T. Ferris
    Joao A. Paulo
    Steven P. Gygi
    Gary A. Churchill
    Genome Biology, 24
  • [8] Discovery of potential biomarkers for osteoporosis diagnosis by individual omics and multi-omics technologies
    Yang, Jing
    Wu, Jun
    EXPERT REVIEW OF MOLECULAR DIAGNOSTICS, 2023, 23 (06) : 505 - 520
  • [9] Identification of Diagnostic Biomarkers and Subtypes of Liver Hepatocellular Carcinoma by Multi-Omics Data Analysis
    Ouyang, Xiao
    Fan, Qingju
    Ling, Guang
    Shi, Yu
    Hu, Fuyan
    GENES, 2020, 11 (09) : 1 - 18
  • [10] Quantitative proteomics and multi-omics analysis identifies potential biomarkers and the underlying pathological molecular networks in Chinese patients with multiple sclerosis
    Yang, Fan
    Zhao, Long-You
    Yang, Wen-Qi
    Chao, Shan
    Ling, Zong-Xin
    Sun, Bo-Yao
    Wei, Li-Ping
    Zhang, Li-Juan
    Yu, Li-Mei
    Cai, Guang-Yong
    BMC NEUROLOGY, 2024, 24 (01)