Plasmid Crosstalk in Cell-Free Expression Systems

被引:1
作者
Piorino, Fernanda [1 ]
Patterson, Alexandra T. [1 ]
Han, Yue [1 ]
Styczynski, Mark P. [1 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
来源
ACS SYNTHETIC BIOLOGY | 2023年 / 12卷 / 10期
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Cell-free systems; plasmid crosstalk; geneticcircuits; resource competition; ribonuclease distraction; toxic metabolite buildup; RESOURCE COMPETITION; BIOLOGY;
D O I
10.1021/acssynbio.3c00412
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Although cell-free protein expression has been widely used for the synthesis of single proteins, cell-free synthetic biology has rapidly expanded to new, more complex applications. One such application is the prototyping or implementation of complex genetic networks involving the expression of multiple proteins at precise ratios, often from different plasmids. However, expression of multiple proteins from multiple plasmids may inadvertently result in unexpected, off-target changes to the levels of the proteins being expressed, a phenomenon termed plasmid crosstalk. Here, we show that the effects of plasmid crosstalk-even at the qualitative level of increases vs decreases in protein expression-depend on the concentration of plasmids in the reaction and the type of transcriptional machinery involved in the expression. This crosstalk can have a significant impact on genetic circuitry function and even interpretation of simple experimental results and thus should be taken into consideration during the development of cell-free applications.
引用
收藏
页码:2843 / 2856
页数:14
相关论文
共 38 条
  • [1] A Fluorescent Split Aptamer for Visualizing RNA-RNA Assembly In Vivo
    Alam, Khalid K.
    Tawiah, Kwaku D.
    Lichte, Matthew F.
    Porciani, David
    Burke, Donald H.
    [J]. ACS SYNTHETIC BIOLOGY, 2017, 6 (09): : 1710 - 1721
  • [2] Cell-free prediction of protein expression costs for growing cells
    Borkowski, Olivier
    Bricio, Carlos
    Murgiano, Michela
    Rothschild-Mancinelli, Brooke
    Stan, Guy-Bart
    Ellis, Tom
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [3] Cell-free protein synthesis: Applications come of age
    Carlson, Erik D.
    Gan, Rui
    Hodgman, C. Eric
    Jewett, Michael C.
    [J]. BIOTECHNOLOGY ADVANCES, 2012, 30 (05) : 1185 - 1194
  • [4] Ceroni F, 2015, NAT METHODS, V12, P415, DOI [10.1038/NMETH.3339, 10.1038/nmeth.3339]
  • [5] Quantification of Interlaboratory Cell-Free Protein Synthesis Variability
    Cole, Stephanie D.
    Beabout, Kathryn
    Turner, Kendrick B.
    Smith, Zachary K.
    Funk, Vanessa L.
    Harbaugh, Svetlana V.
    Liem, Alvin T.
    Roth, Pierce A.
    Geier, Brian A.
    Emanuel, Peter A.
    Walper, Scott A.
    Chavez, Jorge L.
    Lux, Matthew W.
    [J]. ACS SYNTHETIC BIOLOGY, 2019, 8 (09): : 2080 - 2091
  • [6] Cell-free metabolic engineering: Biomanufacturing beyond the cell
    Dudley, Quentin M.
    Karim, Ashty S.
    Jewett, Michael C.
    [J]. BIOTECHNOLOGY JOURNAL, 2015, 10 (01) : 69 - 82
  • [7] Gibson DG, 2009, NAT METHODS, V6, P343, DOI [10.1038/NMETH.1318, 10.1038/nmeth.1318]
  • [8] Toehold Switches: De-Novo-Designed Regulators of Gene Expression
    Green, Alexander A.
    Silver, Pamela A.
    Collins, James J.
    Yin, Peng
    [J]. CELL, 2014, 159 (04) : 925 - 939
  • [9] Leveraging Resource Competition for Part Characterization in Cell-Free Extracts
    Gyorgy, Andras
    [J]. IFAC PAPERSONLINE, 2019, 52 (26): : 17 - 23
  • [10] Gyorgy A, 2016, IEEE DECIS CONTR P, P3363, DOI 10.1109/CDC.2016.7798775