Millimeter-Wave Radar-Based Elderly Fall Detection Fed by One-Dimensional Point Cloud and Doppler

被引:6
|
作者
Kittiyanpunya, Chainarong [1 ]
Chomdee, Pongsathorn [2 ]
Boonpoonga, Akkarat [3 ]
Torrungrueng, Danai [4 ]
机构
[1] Rajamangala Univ Technol Rattanakosin, Fac Engn, Dept Mechatron Engn, Nakhon Pathom 73170, Thailand
[2] Navamindradhiraj Univ, Urban Community Dev Coll, Dept Technol, Bangkok 10300, Thailand
[3] King Mongkuts Univ Technol North Bangkok, Fac Engn, Res Ctr Innovat Digital & Electromagnet Technol iD, Dept Elect & Comp Engn, Bangkok 10800, Thailand
[4] King Mongkuts Univ Technol North Bangkok, Fac Techn Educ, Res Ctr Innovat Digital & Electromagnet Technol iD, Dept Teacher Training Elect Engn, Bangkok 10800, Thailand
关键词
Fall detection; point cloud; doppler; FMCW; millimeter-wave radar; LSTM; SENSORS; SYSTEM;
D O I
10.1109/ACCESS.2023.3297512
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents an elderly fall detection technique fed by one-dimensional (1-D) point cloud and doppler velocity. In the proposed technique, the long short-term memory (LSTM) network is created and then employed as an intelligent classifier of fall detection. 1-D point clouds and doppler velocity are the input data fed to the LSTM network. Experiments were conducted in order to verify the performance of the proposed fall detection technique. In the experiments, ten participants conducted various continuous sequence activities, for example standing still, walking, sitting, sleeping, simulating a fall, etc., in five different rooms. The millimeter-wave (mmWave) frequency-modulated continuous wave (FMCW) radar was employed to collect radar scattering signals that were transformed into data, including point clouds and doppler velocity. Different types of data grouped as inputs of the LSTM network of the fall detection system were investigated. The accuracy of the training and validation for the proposed system has shown that the point clouds in the z-axis direction and doppler velocity are adequate to be selected as the input data of the LSTM network. The proposed fall detection system can reduce overfitting problems and achieve the least number of input data features, resulting in the least computational complexity compared with state-of-the-art approaches. Before performing fall detection, the data were cleaned by using filtering, and the fault detection was reduced by using sliding window processing. After data preprocessing, the resulting outputs were employed for training and validation of the LSTM network. The window-size effect on the performance of fall detection using point clouds in the z-axis direction and doppler velocity was investigated, and the experimental results have shown that the proposed technique can detect a fall in real time. A fall detected by using the proposed system coincides with the activity of simulating a fall. The fall detection accuracy achieved by the proposed technique can reach up to 99.50%.
引用
收藏
页码:76269 / 76283
页数:15
相关论文
共 50 条
  • [11] 3-D Object Detection for Multiframe 4-D Automotive Millimeter-Wave Radar Point Cloud
    Tan, Bin
    Ma, Zhixiong
    Zhu, Xichan
    Li, Sen
    Zheng, Lianqing
    Chen, Sihan
    Huang, Libo
    Bai, Jie
    IEEE SENSORS JOURNAL, 2023, 23 (11) : 11125 - 11138
  • [12] Fall Detection System Based on Millimeter Wave Radar and Machine Learning
    Liang, Jiye
    Huang, Yu
    Huang, Zhuo
    2022 6TH INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION SCIENCES (ICRAS 2022), 2022, : 178 - 183
  • [13] A Millimeter-Wave MIMO Radar Network for Human Activity Recognition and Fall Detection
    Froehlich, Ann-Christine
    Mejdani, Desar
    Engel, Lukas
    Braeunig, Johanna
    Kammel, Christoph
    Vossiek, Martin
    Ullmann, Ingrid
    2024 IEEE RADAR CONFERENCE, RADARCONF 2024, 2024,
  • [14] Broadband Millimeter-Wave Imaging Radar-Based 3-D Holographic Reconstruction for Nondestructive Testing
    Zhang, Xiaoxuan
    Liang, Jie
    Wang, Nan
    Chang, Tianying
    Guo, Qijia
    Cui, Hong-Liang
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2020, 68 (03) : 1074 - 1085
  • [15] mBox: 3D object detection based on millimeter-wave radar
    Huang, Tingpei
    Gao, Rongyu
    Wang, Haotian
    Liu, Jianhang
    Li, Shibao
    MEASUREMENT, 2025, 246
  • [16] 3D Head Motion Detection Using Millimeter-Wave Doppler Radar
    Raja, Muneeba
    Vali, Zahra
    Palipana, Sameera
    Michelson, David G.
    Sigg, Stephan
    IEEE ACCESS, 2020, 8 (08): : 32321 - 32331
  • [17] One-Class Classification for Radar-Based Human Fall Event Detection
    Dey, Ankita
    Rajan, Sreeraman
    Xiao, Gaozhi
    Lu, Jianping
    IEEE SENSORS LETTERS, 2023, 7 (07)
  • [18] Dense 3D Point Cloud Environmental Mapping Using Millimeter-Wave Radar
    Zeng, Zhiyuan
    Wen, Jie
    Luo, Jianan
    Ding, Gege
    Geng, Xiongfei
    SENSORS, 2024, 24 (20)
  • [19] Vehicle Detection Based on Fusion of Millimeter-wave Radar and Machine Vision
    Zhang B.
    Zhan Y.
    Pan D.
    Cheng J.
    Song W.
    Liu W.
    Zhan, Yehui (2018170716@mail.hfut.edu.cn), 1600, SAE-China (43): : 478 - 484
  • [20] Quantitative Assessment of Fall Risk in the Elderly Through Fusion of Millimeter-Wave Radar Imaging and Trajectory Features
    Wang, Wei
    Gong, Yanxiao
    Zhang, Hao
    Yuan, Xiaoling
    Zhang, Yunpeng
    IEEE ACCESS, 2024, 12 : 13370 - 13385