Borel Summability of the 1/N Expansion in Quartic O(N)-Vector Models

被引:0
|
作者
Ferdinand, L. [1 ]
Gurau, R. [2 ,3 ,4 ]
Perez-Sanchez, C. I. [2 ]
Vignes-Tourneret, F. [5 ]
机构
[1] Univ Paris Saclay, Lab Phys Infinis Irene Joliot Curie IJCLab 2, CNRS, UMR 9012, Bat 210, F-91405 Orsay, France
[2] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 19, D-69120 Heidelberg, Germany
[3] Inst Polytech Paris, Ecole Polytech, CPHT, CNRS, Route Saclay, F-91128 Palaiseau, France
[4] Perimeter Inst Theoret Phys, 31 Caroline St N, Waterloo, ON N2L 2Y5, Canada
[5] Univ Claude Bernard Lyon UMR 1, Univ Lyon, Inst Camille Jordan, CNRS,UMR 5208, F-69622 Villeurbanne, France
来源
ANNALES HENRI POINCARE | 2024年 / 25卷 / 03期
基金
欧洲研究理事会;
关键词
FIELD-THEORY;
D O I
10.1007/s00023-023-01350-w
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a quartic O(N)-vector model. Using the loop vertex expansion, we prove the Borel summability in 1/N along the real axis of the partition function and of the connected correlations of the model. The Borel summability holds uniformly in the coupling constant, as long as the latter belongs to a cardioid like domain of the complex plane, avoiding the negative real axis.
引用
收藏
页码:2037 / 2064
页数:28
相关论文
共 24 条
  • [1] The 1/N Expansion of Colored Tensor Models
    Gurau, Razvan
    ANNALES HENRI POINCARE, 2011, 12 (05): : 829 - 847
  • [2] Borel resummation of the E⟩-expansion of the dynamical exponent z in model a of the I• 4(O(n)) theory
    Nalimov, M. Yu.
    Sergeev, V. A.
    Sladkoff, L.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 159 (01) : 499 - 508
  • [3] Beyond N = ∞ in large N conformal vector models at finite temperature
    Diatlyk, Oleksandr
    Popov, Fedor K.
    Wang, Yifan
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (08):
  • [4] The effective potential of N-vector models:: a field-theoretic study to O(ε3)
    Pelissetto, A
    Vicari, E
    NUCLEAR PHYSICS B, 2000, 575 (03) : 579 - 598
  • [5] Large-n critical behavior of O(n) x O(m) spin models
    Pelissetto, A
    Rossi, P
    Vicari, E
    NUCLEAR PHYSICS B, 2001, 607 (03) : 605 - 634
  • [6] Boundary operators in the O(n) and RSOS matrix models
    Bourgine, Jean-Emile
    Hosomichi, Kazuo
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (01):
  • [7] Critical exponents of O(N) models in fractional dimensions
    Codello, Alessandro
    Defenu, Nicolo
    D'Odorico, Giulio
    PHYSICAL REVIEW D, 2015, 91 (10):
  • [8] ON THE TYPE OF THE TEMPERATURE PHASE TRANSITION IN O(N) MODELS
    Bordag, M.
    Demchik, V. I.
    Gulov, A. V.
    Skalozub, V. V.
    PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2012, (01): : 43 - 47
  • [9] Incompleteness of the large-N analysis of the O(N) models: Nonperturbative cuspy fixed points and their nontrivial homotopy at finite N
    Yabunaka, S.
    Fleming, C.
    Delamotte, B.
    PHYSICAL REVIEW E, 2022, 106 (05)
  • [10] One point functions in large N vector models at finite chemical potential
    David, Justin R.
    Kumar, Srijan
    JOURNAL OF HIGH ENERGY PHYSICS, 2025, (01):