Reactive diffusion of lithium in silicon in anode materials for Li-ion batteries

被引:1
|
作者
Li, Bin [1 ]
Goldman, Alexander [1 ]
Xu, Jun [2 ,3 ,4 ]
机构
[1] Univ Nevada, Dept Chem & Mat Engn, Reno, NV 89557 USA
[2] Univ North Carolina Charlotte, Dept Mech Engn & Engn Sci, Charlotte, NC 28223 USA
[3] Univ North Carolina Charlotte, North Carolina Motorsports & Automot Res Ctr, Vehicle Energy & Safety Lab VESL, Charlotte, NC 28223 USA
[4] Univ North Carolina Charlotte, Sch Data Sci, Charlotte, NC 28223 USA
关键词
Reactive diffusion; Lithium; Silicon; Anode; EMBEDDED-ATOM POTENTIALS; IN-SITU TEM; ELECTROCHEMICAL LITHIATION; CRYSTALLINE SILICON; COMPOSITE ANODES; DYNAMICS; FRACTURE; NANOPILLARS; MECHANISMS; STRESS;
D O I
10.1016/j.mtla.2023.101796
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, we perform atomistic simulations on the insertion of lithium (Li) in crystalline silicon (c-Si) by using a modified embedded atom method potential. Novel structural analyzes definitively reveal the mechanism of reactive diffusion Li in c-Si. The results show that Li atoms diffuse preferably along the 112 directions on the {111} planes, and the energy barrier is close to 0.6 eV/atom, which is very high for thermally activated diffusion around room temperature. This diffusion path leads to the formation of an interface between the a-LixSi and the c-Si, i.e., ACI. In the ACI region, the Li atoms appear to be aligned along the (111) planes. The ACI is a supersaturated Si-Li solid solution with large lattice distortion. Insertion of more Li atoms causes the ACI region, which is still crystalline, to collapse, but the amorphization is incomplete. A new ACI is then formed and migrates into the c-Si. Our results also demonstrate that the diffusion rate of Li in the a-LixSi is about 50-100 times faster than in the c-Si. This leads to an interesting growth mechanism for the a-LixSi. The earlier inserted Li atoms are pushed outward by the later inserted Li atoms. The value of x is measured from our simulation results: x approximate to 0.17 in the ACI and x approximate to 0.5 right next to the ACI, respectively. Inside the a-LixSi, x varies between 0.9 and 2.3 from the ACI toward the surface; close to the surface, x approximate to 4.0.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Lithium Silicates in Anode Materials for Li-Ion and Li Metal Batteries
    Su, Yu-Sheng
    Hsiao, Kuang-Che
    Sireesha, Pedaballi
    Huang, Jen-Yen
    BATTERIES-BASEL, 2022, 8 (01):
  • [2] Nanoscale silicon as anode for Li-ion batteries: The fundamentals, promises, and challenges
    Gu, Meng
    He, Yang
    Zheng, Jianming
    Wang, Chongmin
    NANO ENERGY, 2015, 17 : 366 - 383
  • [3] Study of silicon/polypyrrole composite as anode materials for Li-ion batteries
    Guo, ZP
    Wang, JZ
    Liu, HK
    Dou, SX
    JOURNAL OF POWER SOURCES, 2005, 146 (1-2) : 448 - 451
  • [4] Silicon as anode material for Li-ion batteries
    Ozanam, Francois
    Rosso, Michel
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2016, 213 : 2 - 11
  • [5] Aluminum alloy anode materials for Li-ion batteries
    Sun, Z. H.
    Chen, Z. F.
    Fu, Q. W.
    Jiang, X. Y.
    17TH IUMRS INTERNATIONAL CONFERENCE IN ASIA (IUMRS-ICA 2016), 2017, 182
  • [6] Silicon nanofilms as anode materials for flexible lithium ion batteries
    Bensalah, Nasr
    Kamand, Fadi Z.
    Zaghou, Mustafa
    Dawoud, Hana D.
    Al Tahtamouni, Talal
    THIN SOLID FILMS, 2019, 690
  • [7] Nanostructured anode materials for Li-ion batteries
    Zhao, Nahong
    Fu, Lijun
    Yang, Lichun
    Zhang, Tao
    Wang, Gaojun
    Wu, Yuping
    van Ree, Teunis
    PURE AND APPLIED CHEMISTRY, 2008, 80 (11) : 2283 - 2295
  • [8] Coal-based kaolin derived porous silicon nanoparticles as anode materials for Li-ion batteries
    Pan, QiLiang
    Zhao, Jianguo
    Du, Yaqin
    Liu, Rui
    Li, Ning
    Xing, Baoyan
    Jiang, Shang
    Pang, Mingjun
    Qu, Wenshan
    Liang, Wei
    Li, Zhi
    Cao, Fengxin
    MICROPOROUS AND MESOPOROUS MATERIALS, 2020, 294
  • [9] Amorphous silicon as a possible anode material for Li-ion batteries
    Bourderau, S
    Brousse, T
    Schleich, DM
    JOURNAL OF POWER SOURCES, 1999, 81 : 233 - 236
  • [10] Nanostructured Silicon as Potential Anode Material for Li-Ion Batteries
    Raic, Matea
    Mikac, Lara
    Maric, Ivan
    Stefanic, Goran
    Skrabic, Marko
    Gotic, Marijan
    Ivanda, Mile
    MOLECULES, 2020, 25 (04):