Genome-wide identification of the WRKY gene family in Camellia oleifera and expression analysis under phosphorus deficiency

被引:4
|
作者
Su, Wenjuan [1 ]
Zhou, Zengliang [2 ]
Zeng, Jin [1 ]
Cao, Ruilan [1 ]
Zhang, Yunyu [1 ]
Hu, Dongnan [1 ]
Liu, Juan [1 ]
机构
[1] Jiangxi Agr Univ, Coll Forestry, Jiangxi Prov Key Lab Silviculture, Nanchang, Peoples R China
[2] Jiangxi Acad Forestry, Jiangxi Prov Key Lab Camellia Germplasm Conservat, Nanchang, Peoples R China
来源
关键词
Camellia oleifera; Phosphorus deficiency; P-efficient variety; expression profile; cultivar specificity; TRANSCRIPTION FACTOR; PHOSPHATE STARVATION; ARABIDOPSIS; EFFICIENCY; RICE; ACID; SOIL;
D O I
10.3389/fpls.2023.1082496
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Camellia oleifera Abel. is an economically important woody edible-oil species that is mainly cultivated in hilly areas of South China. The phosphorus (P) deficiency in the acidic soils poses severe challenges for the growth and productivity of C. oleifera. WRKY transcription factors (TFs) have been proven to play important roles in biological processes and plant responses to various biotic/abiotic stresses, including P deficiency tolerance. In this study, 89 WRKY proteins with conserved domain were identified from the C. oleifera diploid genome and divided into three groups, with group II further classified into five subgroups based on the phylogenetic relationships. WRKY variants and mutations were detected in the gene structure and conserved motifs of CoWRKYs. Segmental duplication events were considered as the primary driver in the expanding process of WRKY gene family in C. oleifera. Based on transcriptomic analysis of two C. oleifera varieties characterized with different P deficiency tolerances, 32 CoWRKY genes exhibited divergent expression patterns in response to P deficiency stress. qRT-PCR analysis demonstrated that CoWRKY11, -14, -20, -29 and -56 had higher positive impact on P-efficient CL40 variety compared with P-inefficient CL3 variety. Similar expression trends of these CoWRKY genes were further observed under P deficiency with longer treatment period of 120d. The result indicated the expression sensitivity of CoWRKYs on the P-efficient variety and the C. oleifera cultivar specificity on the P deficiency tolerance. Tissue expression difference showed CoWRKYs may play a crucial role in the transportation and recycling P in leaves by affecting diverse metabolic pathways. The available evidences in the study conclusively shed light on the evolution of the CoWRKY genes in C. oleifera genome and provided a valuable resource for further investigation of functional characterization of WRKY genes involved to enhance the P deficiency tolerance in C. oleifera.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava
    Wei, Yunxie
    Shi, Haitao
    Xia, Zhiqiang
    Tie, Weiwei
    Ding, Zehong
    Yan, Yan
    Wang, Wenquan
    Hu, Wei
    Li, Kaimian
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [2] Genome-Wide Identification of WRKY Gene Family and Expression Analysis under Abiotic Stress in Barley
    Zheng, Junjun
    Zhang, Ziling
    Tong, Tao
    Fang, Yunxia
    Zhang, Xian
    Niu, Chunyu
    Li, Jia
    Wu, Yuhuan
    Xue, Dawei
    Zhang, Xiaoqin
    AGRONOMY-BASEL, 2021, 11 (03):
  • [3] Genome-Wide Identification and Expression Analysis of WRKY Gene Family in Neolamarckia cadamba
    Xu, Zuowei
    Liu, Yutong
    Fang, Huiting
    Wen, Yanqiong
    Wang, Ying
    Zhang, Jianxia
    Peng, Changcao
    Long, Jianmei
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (08)
  • [4] Genome-wide identification and expression analysis of the WRKY gene family in Mikania micrantha
    Zhang, Zihan
    Ji, Mei
    Ze, Sangzi
    Song, Wenzheng
    Yang, Bin
    Zhao, Ning
    BMC GENOMICS, 2025, 26 (01):
  • [5] Genome-wide identification and molecular evolution of Dof gene family in Camellia oleifera
    Fu, Chun
    Xiao, YuJie
    Jiang, Na
    Yang, YaoJun
    BMC GENOMICS, 2024, 25 (01):
  • [6] Genome-wide identification of WRKY gene family and expression analysis under abiotic stresses in Andrographis paniculata
    Wang, Qichao
    Zeng, Wujing
    Ali, Basharat
    Zhang, Xuemin
    Xu, Ling
    Liang, Zongsuo
    BIOCELL, 2021, 45 (04) : 1107 - 1119
  • [7] Genome-wide analysis of the WRKY gene family in drumstick (Moringa oleifera Lam.)
    Zhang, Junjie
    Yang, Endian
    He, Qian
    Lin, Mengfei
    Zhou, Wei
    Pian, Ruiqi
    Chen, Xiaoyang
    PEERJ, 2019, 7
  • [8] Genome-Wide Identification and Analysis of WRKY Gene Family in Melastoma dodecandrum
    Tang, Ruonan
    Zhu, Yunjun
    Yang, Songmin
    Wang, Fei
    Chen, Guizhen
    Chen, Jinliao
    Zhao, Kai
    Liu, Zhongjian
    Peng, Donghui
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (19)
  • [9] Genome-Wide Identification and Analysis of the WRKY Gene Family in Asparagus officinalis
    Chen, Jing
    Hou, Sijia
    Zhang, Qianqian
    Meng, Jianqiao
    Zhang, Yingying
    Du, Junhong
    Wang, Cong
    Liang, Dan
    Guo, Yunqian
    GENES, 2023, 14 (09)
  • [10] Genome-wide identification and expression analysis of the Dof gene family under drought stress in tea (Camellia sinensis)
    Yu, Qian
    Li, Chen
    Zhang, Jiucheng
    Tian, Yueyue
    Wang, Hanyue
    Zhang, Yue
    Zhang, Zhengqun
    Xiang, Qinzeng
    Han, Xiaoyang
    Zhang, Lixia
    PEERJ, 2020, 8