On convergence of extended state observers for nonlinear systems with non-differentiable uncertainties

被引:1
|
作者
Wu, Xiang [1 ]
Lu, Qun [2 ]
She, Jinhua [3 ]
Sun, Mingxuan [1 ]
Yu, Li [1 ]
Su, Chun-Yi [2 ,4 ]
机构
[1] Zhejiang Univ Technol, Coll Informat Engn, Hangzhou, Peoples R China
[2] Taizhou Univ, Sch Aeronaut Engn, Jiaojiang 318000, Zhejiang, Peoples R China
[3] Tokyo Univ Technol, Sch Engn, Hachioji, Tokyo 1920982, Japan
[4] Concordia Univ, Dept Mech Ind & Aerosp Engn, Montreal, PQ H3G 1M8, Canada
关键词
Extended state observers; Nonlinear systems; Convergence analysis; Non-differentiable uncertainties; SLIDING-MODE CONTROL; FINITE-TIME; ACTIVE DISTURBANCE; DESIGN; STABILIZATION;
D O I
10.1016/j.isatra.2022.11.012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The analysis of convergence of extended state observers (ESOs) requires the total disturbance to be differentiable. However, this requirement is not satisfied in many control engineering practices. In this paper, we attempt to analyze the convergence of ESOs for nonlinear systems with non-differentiable uncertainties. A decomposition method is first presented to divide the non-differentiable total disturbance into a differentiable signal and a bounded but non-differentiable signal. Based on this decomposition, we give out the convergence of both nonlinear and linear ESOs (NLESO/LESO), low-and high-power ESOs (LPESO/HPESO), and fixed-time ESO (FxESO). We also derive the explicit formulas for the estimation errors of these ESOs. Simulations and experiments demonstrate the correctness of the analysis results.(c) 2022 ISA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:590 / 604
页数:15
相关论文
共 50 条
  • [1] On Convergence of Extended State Observers for Discrete-Time Nonlinear Systems
    Huang, Yuan
    Wang, Junzheng
    Shi, Dawei
    2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 551 - 556
  • [2] THERMODYNAMICS OF NON-DIFFERENTIABLE SYSTEMS
    BOYLING, JB
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1974, 9 (06) : 379 - 392
  • [3] Extended convergence for two-step methods with non-differentiable parts in Banach spaces
    Argyros, Ioannis K.
    George, Santhosh
    Senapati, Kedarnath
    JOURNAL OF ANALYSIS, 2024, 32 (02): : 697 - 709
  • [4] Extended convergence for two-step methods with non-differentiable parts in Banach spaces
    Ioannis K. Argyros
    Santhosh George
    Kedarnath Senapati
    The Journal of Analysis, 2024, 32 (2) : 697 - 709
  • [5] Convergence of Steffensen's method for non-differentiable operators
    Argyros, I. K.
    Hernandez-Veron, M. A.
    Rubio, M. J.
    NUMERICAL ALGORITHMS, 2017, 75 (01) : 229 - 244
  • [6] Convergence of Steffensen’s method for non-differentiable operators
    I. K. Argyros
    M. A. Hernández-Verón
    M. J. Rubio
    Numerical Algorithms, 2017, 75 : 229 - 244
  • [7] ITERATIVE LEARNING CONTROL ON NONLINEAR STOCHASTIC NETWORKED SYSTEMS WITH NON-DIFFERENTIABLE DYNAMICS
    Alsadat, Najafi Sedigheh
    Ali, Delavarkhalafi
    Mehdi, Karbassi Seyed
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2021, 14 (04): : 63 - 73
  • [8] Observers for the class of differentiable Lipschitz nonlinear systems
    Xu, Fengbao
    Xu, Mingyue
    Zhou, Qingxin
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 72 - 75
  • [9] Hybrid protocol for distributed non-differentiable extended monotropic optimization
    Jiang, Xia
    Zeng, Xianlin
    Sun, Jian
    Chen, Jie
    2020 IEEE 16TH INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION (ICCA), 2020, : 654 - 659
  • [10] Exact State Reconstruction for LTI-Systems with Non-Differentiable Unknown Inputs
    Tranninger, Markus
    Seeber, Richard
    Steinberger, Martin
    Horn, Martin
    2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), 2019, : 3096 - 3102