Transferable Deep Metric Learning for Clustering

被引:1
作者
Chehboune, Mohamed Alami [1 ,2 ]
Kaddah, Rim [2 ]
Read, Jesse [1 ]
机构
[1] Ecole Polytech, Dept Comp Sci, Palaiseau, France
[2] IRT SystemX, Palaiseau, France
来源
ADVANCES IN INTELLIGENT DATA ANALYSIS XXI, IDA 2023 | 2023年 / 13876卷
关键词
Clustering; Transfer Learning; Metric Learning;
D O I
10.1007/978-3-031-30047-9_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering in high dimension spaces is a difficult task; the usual distance metrics may no longer be appropriate under the curse of dimensionality. Indeed, the choice of the metric is crucial, and it is highly dependent on the dataset characteristics. However a single metric could be used to correctly perform clustering on multiple datasets of different domains. We propose to do so, providing a framework for learning a transferable metric. We show that we can learn a metric on a labelled dataset, then apply it to cluster a different dataset, using an embedding space that characterises a desired clustering in the generic sense. We learn and test such metrics on several datasets of variable complexity (synthetic, MNIST, SVHN, omniglot) and achieve results competitive with the state-of-the-art while using only a small number of labelled training datasets and shallow networks.
引用
收藏
页码:15 / 28
页数:14
相关论文
共 50 条
  • [21] Deep Metric Learning: A Survey
    Kaya, Mahmut
    Bilge, Hasan Sakir
    SYMMETRY-BASEL, 2019, 11 (09):
  • [22] Deep Domain Adaptation Using Cascaded Learning Networks and Metric Learning
    Zeng, Zhiyong
    Li, Dawei
    Yang, Xiujuan
    IEEE ACCESS, 2023, 11 : 3564 - 3572
  • [23] Deep Multitask Metric Learning for Offline Signature Verification
    Soleimani, Amir
    Araabi, Babak N.
    Fouladi, Kazim
    PATTERN RECOGNITION LETTERS, 2016, 80 : 84 - 90
  • [24] Deep transferable learning on heartbeat classification for imbalance dataset
    Sabir, Imran
    Baber, Junaid
    Ahmed, Atiq
    Sheikh, Naveed
    Bakhtyar, Maheen
    Khan, Azam
    Devi, Varsha
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (02) : 2057 - 2067
  • [25] Metric Learning-Based Subspace Clustering
    Xu, Yesong
    Chen, Shuo
    Li, Jun
    Yang, Jian
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025,
  • [26] Study on Semi Supervised Clustering by Metric Learning
    Jiang, Xiuqin
    Wang, Shitong
    DCABES 2008 PROCEEDINGS, VOLS I AND II, 2008, : 634 - 638
  • [27] Nonlinear Adaptive Distance Metric Learning for Clustering
    Chen, Jianhui
    Zhao, Zheng
    Ye, Jieping
    Liu, Huan
    KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2007, : 123 - 132
  • [28] Deep Metric Learning for Crowdedness Regression
    Wang, Qi
    Wan, Jia
    Yuan, Yuan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2018, 28 (10) : 2633 - 2643
  • [29] DEEP TRANSFORM AND METRIC LEARNING NETWORKS
    Tang, Wen
    Chouzenoux, Emilie
    Pesquet, Jean-Christophe
    Krim, Hamid
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 2735 - 2739
  • [30] Deep Metric Learning for Visual Tracking
    Hu, Junlin
    Lu, Jiwen
    Tan, Yap-Peng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2016, 26 (11) : 2056 - 2068