Transferable Deep Metric Learning for Clustering

被引:1
作者
Chehboune, Mohamed Alami [1 ,2 ]
Kaddah, Rim [2 ]
Read, Jesse [1 ]
机构
[1] Ecole Polytech, Dept Comp Sci, Palaiseau, France
[2] IRT SystemX, Palaiseau, France
来源
ADVANCES IN INTELLIGENT DATA ANALYSIS XXI, IDA 2023 | 2023年 / 13876卷
关键词
Clustering; Transfer Learning; Metric Learning;
D O I
10.1007/978-3-031-30047-9_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering in high dimension spaces is a difficult task; the usual distance metrics may no longer be appropriate under the curse of dimensionality. Indeed, the choice of the metric is crucial, and it is highly dependent on the dataset characteristics. However a single metric could be used to correctly perform clustering on multiple datasets of different domains. We propose to do so, providing a framework for learning a transferable metric. We show that we can learn a metric on a labelled dataset, then apply it to cluster a different dataset, using an embedding space that characterises a desired clustering in the generic sense. We learn and test such metrics on several datasets of variable complexity (synthetic, MNIST, SVHN, omniglot) and achieve results competitive with the state-of-the-art while using only a small number of labelled training datasets and shallow networks.
引用
收藏
页码:15 / 28
页数:14
相关论文
共 50 条
  • [1] Semi-supervised Clustering with Deep Metric Learning
    Li, Xiaocui
    Yin, Hongzhi
    Zhou, Ke
    Chen, Hongxu
    Sadiq, Shazia
    Zhou, Xiaofang
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, 2019, 11448 : 383 - 386
  • [2] Deep metric learning via subtype fuzzy clustering
    Ren, Chuan-Xian
    Li, Ju-Zheng
    Ge, Pengfei
    Xu, Xiao-Lin
    PATTERN RECOGNITION, 2019, 90 : 210 - 219
  • [3] Dealing With Multipositive Unlabeled Learning Combining Metric Learning and Deep Clustering
    Racanati, Amedeo
    Esposito, Roberto
    Ienco, Dino
    IEEE ACCESS, 2022, 10 : 51839 - 51849
  • [4] Semi-supervised clustering with deep metric learning and graph embedding
    Xiaocui Li
    Hongzhi Yin
    Ke Zhou
    Xiaofang Zhou
    World Wide Web, 2020, 23 : 781 - 798
  • [5] Improving spectral clustering with deep embedding, cluster estimation and metric learning
    Liang Duan
    Shuai Ma
    Charu Aggarwal
    Saket Sathe
    Knowledge and Information Systems, 2021, 63 : 675 - 694
  • [6] Improving spectral clustering with deep embedding, cluster estimation and metric learning
    Duan, Liang
    Ma, Shuai
    Aggarwal, Charu
    Sathe, Saket
    KNOWLEDGE AND INFORMATION SYSTEMS, 2021, 63 (03) : 675 - 694
  • [7] Semi-supervised clustering with deep metric learning and graph embedding
    Li, Xiaocui
    Yin, Hongzhi
    Zhou, Ke
    Zhou, Xiaofang
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2020, 23 (02): : 781 - 798
  • [8] Intention-guided deep semi-supervised document clustering via metric learning
    Li, Jingnan
    Lin, Chuan
    Huang, Ruizhang
    Qin, Yongbin
    Chen, Yanping
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2023, 35 (01) : 416 - 425
  • [9] Metric learning with clustering-based constraints
    Guo, Xinyao
    Dang, Chuangyin
    Liang, Jianqing
    Wei, Wei
    Liang, Jiye
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2021, 12 (12) : 3597 - 3605
  • [10] Metric learning with clustering-based constraints
    Xinyao Guo
    Chuangyin Dang
    Jianqing Liang
    Wei Wei
    Jiye Liang
    International Journal of Machine Learning and Cybernetics, 2021, 12 : 3597 - 3605