PT-symmetry phase transition in a Bose-Hubbard model with localized gain and loss

被引:2
作者
Moca, Catalin Pascu [1 ,2 ]
Sticlet, Doru [3 ]
Dora, Balazs [1 ,4 ]
Zarand, Gergely [1 ,5 ]
机构
[1] Budapest Univ Technol & Econ, Inst Phys, Dept Theoret Phys, Muegyetem Rkp 3, H-1111 Budapest, Hungary
[2] Univ Oradea, Dept Phys, Oradea 410087, Romania
[3] Natl Inst Res & Dev Isotop & Mol Technol, 67-103 Donat, Cluj Napoca 400293, Romania
[4] Budapest Univ Technol & Econ, MTA BME Lendulet Topol & Correlat Res Grp, Muegyetem Rkp 3, H-1111 Budapest, Hungary
[5] Budapest Univ Technol & Econ, MTA BME Quantum Dynam & Correlat Res Grp, Muegyetem Rkp 3, H-1111 Budapest, Hungary
关键词
SYSTEMS; ATOMS;
D O I
10.1103/PhysRevB.107.115111
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the dissipative dynamics of a one-dimensional bosonic system described in terms of the bipartite Bose-Hubbard model with alternating gain and loss. This model exhibits the PT symmetry under some specific conditions and features a PT-symmetry phase transition. It is characterized by an order parameter corresponding to the population imbalance between even and odd sites,similar to the continuous phase transitions in the Hermitian realm. In the noninteracting limit, we solve the problem exactly and compute the parameter dependence of the order parameter. The interacting limit is addressed at the mean-field level, which allows us to construct the phase diagram for the model. We find that both the interaction and dissipation rates induce PT-symmetry breaking. On the other hand, periodic modulation of the dissipative coupling in time stabilizes the PT-symmetric regime. Our findings are corroborated numerically on a tight-binding chain with gain and loss.
引用
收藏
页数:8
相关论文
共 50 条
[41]   Scaling property of the critical hopping parameters for the Bose-Hubbard model [J].
Teichmann, N. ;
Hinrichs, D. .
EUROPEAN PHYSICAL JOURNAL B, 2009, 71 (02) :219-223
[42]   Superfluid drag in the two-component Bose-Hubbard model [J].
Sellin, Karl ;
Babaev, Egor .
PHYSICAL REVIEW B, 2018, 97 (09)
[43]   Effects of initial states on the quantum correlation in Bose-Hubbard model [J].
Hong, Guo .
ACTA PHYSICA SINICA, 2015, 64 (22)
[44]   Liouvillian skin effects and fragmented condensates in an integrable dissipative Bose-Hubbard model [J].
Ekman, Christopher ;
Bergholtz, Emil J. .
PHYSICAL REVIEW RESEARCH, 2024, 6 (03)
[45]   Density-dependent tunneling in the extended Bose-Hubbard model [J].
Maik, Michal ;
Hauke, Philipp ;
Dutta, Omjyoti ;
Lewenstein, Maciej ;
Zakrzewski, Jakub .
NEW JOURNAL OF PHYSICS, 2013, 15
[46]   Ground States of the Spin-1 Bose-Hubbard Model [J].
Katsura, Hosho ;
Tasaki, Hal .
PHYSICAL REVIEW LETTERS, 2013, 110 (13)
[47]   Quantum fluctuations beyond the Gutzwiller approximation in the Bose-Hubbard model [J].
Caleffi, Fabio ;
Capone, Massimo ;
Menotti, Chiara ;
Carusotto, Iacopo ;
Recati, Alessio .
PHYSICAL REVIEW RESEARCH, 2020, 2 (03)
[48]   Spatio-Temporal Spreading of Correlations in the Bose-Hubbard Model [J].
Kennett, Malcolm P. ;
Fitzpatrick, Matthew R. C. .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2020, 201 (1-2) :82-89
[49]   Bose-Hubbard model with attractive interactions and inhomogeneous lattice potential [J].
Khanore, Mukesh ;
Dey, Bishwajyoti .
SOLID STATE PHYSICS: PROCEEDINGS OF THE 58TH DAE SOLID STATE PHYSICS SYMPOSIUM 2013, PTS A & B, 2014, 1591 :139-141
[50]   Reentrance and entanglement in the one-dimensional Bose-Hubbard model [J].
Pino, M. ;
Prior, J. ;
Somoza, A. M. ;
Jaksch, D. ;
Clark, S. R. .
PHYSICAL REVIEW A, 2012, 86 (02)