Convolutional Neural Network-Based Classification of Multiple Retinal Diseases Using Fundus Images

被引:1
|
作者
Aslam, Aqsa [1 ]
Farhan, Saima [1 ]
Khaliq, Momina Abdul [1 ]
Anjum, Fatima [1 ]
Afzaal, Ayesha [1 ]
Kanwal, Faria [1 ]
机构
[1] Lahore Coll Women Univ, Lahore 54000, Pakistan
关键词
Classification; convolutional neural network; fundus images; medical image diagnosis; retinal diseases; DIABETIC-RETINOPATHY;
D O I
10.32604/iasc.2023.034041
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Use of deep learning algorithms for the investigation and analysis of medical images has emerged as a powerful technique. The increase in retinal dis-eases is alarming as it may lead to permanent blindness if left untreated. Automa-tion of the diagnosis process of retinal diseases not only assists ophthalmologists in correct decision-making but saves time also. Several researchers have worked on automated retinal disease classification but restricted either to hand-crafted fea-ture selection or binary classification. This paper presents a deep learning-based approach for the automated classification of multiple retinal diseases using fundus images. For this research, the data has been collected and combined from three distinct sources. The images are preprocessed for enhancing the details. Six layers of the convolutional neural network (CNN) are used for the automated feature extraction and classification of 20 retinal diseases. It is observed that the results are reliant on the number of classes. For binary classification (healthy vs. unhealthy), up to 100% accuracy has been achieved. When 16 classes are used (treating stages of a disease as a single class), 93.3% accuracy, 92% sensitivity and 93% specificity have been obtained respectively. For 20 classes (treating stages of the disease as separate classes), the accuracy, sensitivity and specificity have dropped to 92.4%, 92% and 92% respectively.
引用
收藏
页码:2607 / 2622
页数:16
相关论文
共 50 条
  • [41] Hemorrhage semantic segmentation in fundus images for the diagnosis of diabetic retinopathy by using a convolutional neural network
    Ayoub Skouta
    Abdelali Elmoufidi
    Said Jai-Andaloussi
    Ouail Ouchetto
    Journal of Big Data, 9
  • [42] Glaucoma Detection with Retinal Fundus Images Using Segmentation and Classification
    Thisara Shyamalee
    Dulani Meedeniya
    Machine Intelligence Research, 2022, 19 : 563 - 580
  • [43] Glaucoma Detection with Retinal Fundus Images Using Segmentation and Classification
    Shyamalee, Thisara
    Meedeniya, Dulani
    MACHINE INTELLIGENCE RESEARCH, 2022, 19 (06) : 563 - 580
  • [44] Glaucoma assessment from color fundus images using convolutional neural network
    Elangovan, Poonguzhali
    Nath, Malaya Kumar
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2021, 31 (02) : 955 - 971
  • [45] Deep Convolutional Neural Network-Based Early Automated Detection of Diabetic Retinopathy Using Fundus Image
    Xu, Kele
    Feng, Dawei
    Mi, Haibo
    MOLECULES, 2017, 22 (12):
  • [46] Laterality Classification of Fundus Images Using Interpretable Deep Neural Network
    Jang, Yeonwoo
    Son, Jaemin
    Park, Kyu Hyung
    Park, Sang Jun
    Jung, Kyu-Hwan
    JOURNAL OF DIGITAL IMAGING, 2018, 31 (06) : 923 - 928
  • [47] Automatic glaucoma classification using color fundus images based on convolutional neural networks and transfer learning
    Gomez-Valverde, Juan J.
    Anton, Alfonso
    Fatti, Gianluca
    Liefers, Bart
    Herranz, Alejandra
    Santos, Andres
    Sanchez, Clara, I
    Ledesma-Carbay, Maria J.
    BIOMEDICAL OPTICS EXPRESS, 2019, 10 (02): : 892 - 913
  • [48] Laterality Classification of Fundus Images Using Interpretable Deep Neural Network
    Yeonwoo Jang
    Jaemin Son
    Kyu Hyung Park
    Sang Jun Park
    Kyu-Hwan Jung
    Journal of Digital Imaging, 2018, 31 : 923 - 928
  • [49] Convolutional Neural Network-Based Parkinson Disease Classification Using SPECT Imaging Data
    Hathaliya, Jigna
    Parekh, Raj
    Patel, Nisarg
    Gupta, Rajesh
    Tanwar, Sudeep
    Alqahtani, Fayez
    Elghatwary, Magdy
    Ivanov, Ovidiu
    Raboaca, Maria Simona
    Neagu, Bogdan-Constantin
    MATHEMATICS, 2022, 10 (15)
  • [50] Classification of Fundus Images For Diabetic Retinopathy using Artificial Neural Network
    Harun, Nor Hazlyna
    Yusof, Yuhanis
    Hassan, Faridah
    Embong, Zunaina
    2019 IEEE JORDAN INTERNATIONAL JOINT CONFERENCE ON ELECTRICAL ENGINEERING AND INFORMATION TECHNOLOGY (JEEIT), 2019, : 498 - 501