An artificial leaf device built with earth-abundant materials for combined H2 production and storage as formate with efficiency > 10%

被引:17
作者
Ampelli, Claudio [1 ,2 ]
Giusi, Daniele [1 ,2 ]
Miceli, Matteo [1 ,2 ]
Merdzhanova, Tsvetelina [3 ]
Smirnov, Vladimir [3 ]
Chime, Ugochi [3 ]
Astakhov, Oleksandr [3 ]
Martin, Antonio Jose [4 ]
Veenstra, Florentine Louise Petronella [4 ]
Pineda, Felipe Andres Garces [5 ]
Gonzalez-Cobos, Jesus [5 ,8 ]
Garcia-Tecedor, Miguel [6 ,9 ]
Gimenez, Sixto [6 ]
Jaegermann, Wolfram [7 ]
Centi, Gabriele [1 ,2 ]
Perez-Ramirez, Javier [4 ]
Galan-Mascaros, Jose Ramon [5 ]
Perathoner, Siglinda [1 ,2 ]
机构
[1] Univ Messina, Dept Chem Biol Pharmaceut & Environm Sci, ER Aisbl, ChiBioFarAm, Messina, Italy
[2] CASPE, INSTM, Messina, Italy
[3] Forschungszentrum Julich, IEK5 Photovolta, D-52425 Julich, Germany
[4] Swiss Fed Inst Technol, Inst Chem & Bioengn, Dept Chem & Appl Biosci, Vladimir Prelog Weg 1, CH-8093 Zurich, Switzerland
[5] Barcelona Inst Sci & Technol BIST, Inst Chem Res Catalonia, ICIQ, Av Paisos Catalans 16, Tarragona 43007, Spain
[6] Univ Jaume 1, Inst Adv Mat, INAM, Castellon de La Plana, Spain
[7] Tech Univ Darmstadt, D-64287 Darmstadt, Germany
[8] Univ Claude Bernard Lyon 1, Inst Rech Catalyse & Environm Lyon, CNRS, UMR 5256, 2 Ave A Einstein, F-69626 Villeurbanne, France
[9] IMDEA Energy, Photoactivated Proc Unit, Avda Ramon Sagra 3, Mostoles 28935, Spain
基金
欧盟地平线“2020”;
关键词
CO2; REDUCTION; CONVERSION EFFICIENCY; SOLAR FUELS; WATER; CELL;
D O I
10.1039/d2ee03215e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A major challenge for achieving energy transition and transforming the current energy model into distributed production is the development of efficient artificial leaf-type devices capable of directly converting carbon dioxide (CO2), water and sunlight into sustainable fuels and chemicals under ambient conditions. These devices should avoid using critical raw materials to be sustainable and cost-competitive. We report top-level results for the first time in converting CO2 and H2O to fuels (formate and H-2) using sunlight and electrodes based solely on earth-abundant materials. The cell provides a solar-to-fuel efficiency of >10% combined with world-record current densities to comparable devices operating at room temperature, without adding sacrificial donors or electrical bias. In addition, we present the novel concept of producing at the same time H-2 and an H-2-storage element (formate), the latter used to produce H-2 when light is absent. This solution allows continuous (24 h) hydrogen production using an artificial-leaf device. For the first time, we show the feasibility of this solution. The experimental results were obtained in an optimised, compact electrochemical flow cell, with electrodes based on Cu-S and Ni-Fe-Zn oxide (for CO2 reduction and oxygen evolution reactions, respectively) supported on gas-diffusion substrates, integrated with a low-cost Si-based photovoltaic module. The cell design allows for easy scale-up and low manufacturing and operating costs. The cell operates at a current density of about 17 mA cm(-2) and a full-cell voltage of 2.5 V (stable for at least ten hours and in on-off operations), providing formate productivity of 193 mu mol h(-1) cm(-2), paving the way towards the implementation of affordable artificial-leaf type systems in the future energy scenario.
引用
收藏
页码:1644 / 1661
页数:18
相关论文
共 59 条
[21]   Review on recent progress and reactor set-ups for hydrogen production from formic acid decomposition [J].
Hafeez, S. ;
Harkou, E. ;
Spanou, A. ;
Al-Salem, S. M. ;
Villa, A. ;
Dimitratos, N. ;
Manos, G. ;
Constantinou, A. .
MATERIALS TODAY CHEMISTRY, 2022, 26
[22]   A general framework for the assessment of solar fuel technologies [J].
Herron, Jeffrey A. ;
Kim, Jiyong ;
Upadhye, Aniruddha A. ;
Huber, George W. ;
Maravelias, Christos T. .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (01) :126-157
[23]   Photosynthesis of formate from CO2 and water at 1% energy efficiency via copper iron oxide catalysis [J].
Kang, Unseock ;
Choi, Sung Kyu ;
Ham, Dong Jin ;
Ji, Sang Min ;
Choi, Wonyong ;
Han, Dong Suk ;
Abdel-Wahabe, Ahmed ;
Park, Hyunwoong .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (09) :2638-2643
[24]   Solar Fuel Production from CO2 Using a 1 m-Square-Sized Reactor with a Solar-to-Formate Conversion Efficiency of 10.5% [J].
Kato, Naohiko ;
Takeda, Yasuhiko ;
Kawai, Yasuaki ;
Nojiri, Natsumi ;
Shiozawa, Masahito ;
Mizuno, Shintaro ;
Yamanaka, Ken-ichi ;
Morikawa, Takeshi ;
Hamaguchi, Tsuyoshi .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (48) :16031-16037
[25]   A large-sized cell for solar-driven CO2 conversion with a solar-to-formate conversion efficiency of 7.2% [J].
Kato, Naohiko ;
Mizuno, Shintaro ;
Shiozawa, Masahito ;
Nojiri, Natsumi ;
Kawai, Yasuaki ;
Fukumoto, Kazuhiro ;
Morikawa, Takeshi ;
Takeda, Yasuhiko .
JOULE, 2021, 5 (03) :687-705
[26]   A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting [J].
Khaselev, O ;
Turner, JA .
SCIENCE, 1998, 280 (5362) :425-427
[27]   Production of CO-Free H2 by Formic Acid Decomposition over Mo2C/Carbon Catalysts [J].
Koos, Akos ;
Solymosi, Frigyes .
CATALYSIS LETTERS, 2010, 138 (1-2) :23-27
[28]   Continuous 3D Titanium Nitride Nanoshell Structure for Solar-Driven Unbiased Biocatalytic CO2 Reduction [J].
Kuk, Su Keun ;
Ham, Youngjin ;
Gopinath, Krishnasamy ;
Boonmongkolras, Passarut ;
Lee, Youngjun ;
Lee, Yang Woo ;
Kondaveeti, Sanath ;
Ahn, Changui ;
Shin, Byungha ;
Lee, Jung-Kul ;
Jeon, Seokwoo ;
Park, Chan Beum .
ADVANCED ENERGY MATERIALS, 2019, 9 (25)
[29]   Artificial leaf for light-driven CO2 reduction: Basic concepts, advanced structures and selective solar-to-chemical products [J].
Kumar, Abhinandan ;
Hasija, Vasudha ;
Sudhaik, Anita ;
Raizada, Pankaj ;
Van Le, Quyet ;
Singh, Pardeep ;
Pham, Thi-Huong ;
Kim, TaeYoung ;
Ghotekar, Suresh ;
Nguyen, Van-Huy .
CHEMICAL ENGINEERING JOURNAL, 2022, 430
[30]   Polyoxometalates as electron and proton reservoir assist electrochemical CO2 reduction [J].
Lang, Zhongling ;
Miao, Jun ;
Lan, Yangchun ;
Cheng, Jiaji ;
Xu, Xiaoqian ;
Cheng, Chun .
APL MATERIALS, 2020, 8 (12)