Dean-Flow Affected Lateral Focusing and Separation of Particles and Cells in Periodically Inhomogeneous Microfluidic Channels

被引:4
作者
Banyai, Anita [1 ,2 ,3 ]
Farkas, Eniko [1 ]
Jankovics, Hajnalka [4 ]
Szekacs, Inna [1 ]
Toth, Eszter Leelossyne [1 ]
Vonderviszt, Ferenc [4 ]
Horvath, Robert [1 ]
Varga, Mate [2 ]
Furjes, Peter [1 ]
机构
[1] Eotvos Lorand Res Network, Inst Tech Phys & Mat Sci, Ctr Energy Res, Konkoly Thege Miklos Str 29-33, H-1121 Budapest, Hungary
[2] 77 Elekt Ltd, Fehervari Str 98, H-1111 Budapest, Hungary
[3] Obuda Univ, Doctoral Sch Mat Sci & Technol, Becsi Str 96-B, H-1034 Budapest, Hungary
[4] Univ Pannonia, Res Inst Biomol & Chem Engn, Egyet Str 10, H-8200 Veszprem, Hungary
关键词
dean flow; hydrodynamic lift; microfluidics; computational fluid dynamics; lateral focusing; cell manipulation; ESCHERICHIA-COLI; DEVICES;
D O I
10.3390/s23020800
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The purpose of the recent work is to give a better explanation of how Dean vortices affect lateral focusing, and to understand how cell morphology can alter the focusing position compared to spherical particles. The position and extent of the focused region were investigated using polystyrene fluorescent beads with different bead diameters (o = 0.5, 1.1, 1.97, 2.9, 4.8, 5.4, 6.08, 10.2, 15.8, 16.5 mu m) at different flow rates (0.5, 1, 2 mu L/s). Size-dependent focusing generated a precise map of the equilibrium positions of the spherical beads at the end of the periodically altering channels, which gave a good benchmark for focusing multi-dimensional particles and cells. The biological samples used for experiments were rod-shaped Escherichia coli (E. coli), discoid biconcave-shaped red blood cells (RBC), round or ovoid-shaped yeast, Saccharomyces cerevisiae, and soft-irregular-shaped HeLa cancer-cell-line cells to understand how the shape of the cells affects the focusing position at the end of the channel.
引用
收藏
页数:19
相关论文
共 38 条
[31]   RADIAL PARTICLE DISPLACEMENTS IN POISEUILLE FLOW OF SUSPENSIONS [J].
SEGRE, G ;
SILBERBERG, A .
NATURE, 1961, 189 (476) :209-&
[32]   Dynamics of a single red blood cell in simple shear flow [J].
Sinha, Kushal ;
Graham, Michael D. .
PHYSICAL REVIEW E, 2015, 92 (04)
[33]   Rapid prototyping polymers for microfluidic devices and high pressure injections [J].
Sollier, Elodie ;
Murray, Coleman ;
Maoddi, Pietro ;
Di Carlo, Dino .
LAB ON A CHIP, 2011, 11 (22) :3752-3765
[34]   Inertial migrations of cylindrical particles in rectangular microchannels: Variations of equilibrium positions and equivalent diameters [J].
Su, Jinghong ;
Chen, Xiaodong ;
Hu, Guoqing .
PHYSICS OF FLUIDS, 2018, 30 (03)
[35]   Patterns of bacterial motility in microfluidics-confining environments [J].
Tokarova, Viola ;
Perumal, Ayyappasamy Sudalaiyadum ;
Nayak, Monalisha ;
Shum, Henry ;
Kaspar, Ondrej ;
Rajendran, Kavya ;
Mohammadi, Mahmood ;
Tremblay, Charles ;
Gaffney, Eamonn A. ;
Martel, Sylvain ;
Nicolau, Dan V., Jr. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (17)
[36]   High-Throughput Inertial Focusing of Micrometer- and Sub-Micrometer-Sized Particles Separation [J].
Wang, Lei ;
Dandy, David S. .
ADVANCED SCIENCE, 2017, 4 (10)
[37]   A numerical model-assisted experimental design study of inertia-based particle focusing in stepped microchannels [J].
Winzen, A. ;
Oishi, M. ;
Oshima, M. .
MICROFLUIDICS AND NANOFLUIDICS, 2018, 22 (03)
[38]   Sheathless inertial cell focusing and sorting with serial reverse wavy channel structures [J].
Zhou, Yinning ;
Ma, Zhichao ;
Ai, Ye .
MICROSYSTEMS & NANOENGINEERING, 2018, 4