Dean-Flow Affected Lateral Focusing and Separation of Particles and Cells in Periodically Inhomogeneous Microfluidic Channels

被引:4
作者
Banyai, Anita [1 ,2 ,3 ]
Farkas, Eniko [1 ]
Jankovics, Hajnalka [4 ]
Szekacs, Inna [1 ]
Toth, Eszter Leelossyne [1 ]
Vonderviszt, Ferenc [4 ]
Horvath, Robert [1 ]
Varga, Mate [2 ]
Furjes, Peter [1 ]
机构
[1] Eotvos Lorand Res Network, Inst Tech Phys & Mat Sci, Ctr Energy Res, Konkoly Thege Miklos Str 29-33, H-1121 Budapest, Hungary
[2] 77 Elekt Ltd, Fehervari Str 98, H-1111 Budapest, Hungary
[3] Obuda Univ, Doctoral Sch Mat Sci & Technol, Becsi Str 96-B, H-1034 Budapest, Hungary
[4] Univ Pannonia, Res Inst Biomol & Chem Engn, Egyet Str 10, H-8200 Veszprem, Hungary
关键词
dean flow; hydrodynamic lift; microfluidics; computational fluid dynamics; lateral focusing; cell manipulation; ESCHERICHIA-COLI; DEVICES;
D O I
10.3390/s23020800
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The purpose of the recent work is to give a better explanation of how Dean vortices affect lateral focusing, and to understand how cell morphology can alter the focusing position compared to spherical particles. The position and extent of the focused region were investigated using polystyrene fluorescent beads with different bead diameters (o = 0.5, 1.1, 1.97, 2.9, 4.8, 5.4, 6.08, 10.2, 15.8, 16.5 mu m) at different flow rates (0.5, 1, 2 mu L/s). Size-dependent focusing generated a precise map of the equilibrium positions of the spherical beads at the end of the periodically altering channels, which gave a good benchmark for focusing multi-dimensional particles and cells. The biological samples used for experiments were rod-shaped Escherichia coli (E. coli), discoid biconcave-shaped red blood cells (RBC), round or ovoid-shaped yeast, Saccharomyces cerevisiae, and soft-irregular-shaped HeLa cancer-cell-line cells to understand how the shape of the cells affects the focusing position at the end of the channel.
引用
收藏
页数:19
相关论文
共 38 条
[1]   Oscillatory Viscoelastic Microfluidics for Efficient Focusing and Separation of Nanoscale Species [J].
Asghari, Mohammad ;
Cao, Xiaobao ;
Mateescu, Bogdan ;
van Leeuwen, Daniel ;
Aslan, Mahmut Kamil ;
Stavrakis, Stavros ;
deMello, Andrew J. .
ACS NANO, 2020, 14 (01) :422-433
[2]   Conformational Spread as a Mechanism for Cooperativity in the Bacterial Flagellar Switch [J].
Bai, Fan ;
Branch, Richard W. ;
Nicolau, Dan V., Jr. ;
Pilizota, Teuta ;
Steel, Bradley C. ;
Maini, Philip K. ;
Berry, Richard M. .
SCIENCE, 2010, 327 (5966) :685-689
[3]   Geometry-Dependent Efficiency of Dean-Flow Affected Lateral Particle Focusing and Separation in Periodically Inhomogeneous Microfluidic Channels [J].
Banyai, Anita ;
Toth, Eszter Leelossyne ;
Varga, Mate ;
Furjes, Peter .
SENSORS, 2022, 22 (09)
[4]  
britannica.com, BRITANNICA BACTERIA
[5]   High-throughput particle separation and concentration using spiral inertial filtration [J].
Burke, Jeffrey M. ;
Zubajlo, Rebecca E. ;
Smela, Elisabeth ;
White, Ian M. .
BIOMICROFLUIDICS, 2014, 8 (02) :1
[6]  
COMSOL COMSOL, MULTIPHYSICS SOFTWAR
[7]   High pressure inertial focusing for separating and concentrating bacteria at high throughput [J].
Cruz, J. ;
Zadeh, S. Hooshmand ;
Graells, T. ;
Andersson, M. ;
Malmstrom, J. ;
Wu, Z. G. ;
Hjort, K. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2017, 27 (08)
[8]   Continuous inertial focusing, ordering, and separation of particles in microchannels [J].
Di Carlo, Dino ;
Irimia, Daniel ;
Tompkins, Ronald G. ;
Toner, Mehmet .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (48) :18892-18897
[9]   3D Printed Microfluidic Spiral Separation Device for Continuous, Pulsation-Free and Controllable CHO Cell Retention [J].
Enders, Anton ;
Preuss, John-Alexander ;
Bahnemann, Janina .
MICROMACHINES, 2021, 12 (09)
[10]  
Feldmann Horst., 2011, Yeast: molecular and cell biology