The determiner of photosynthetic acclimation induced by biochemical limitation under elevated CO2 in japonica rice

被引:12
作者
Yang, Kai [1 ,2 ,5 ]
Huang, Yao [1 ,2 ]
Yang, Jingrui [1 ,2 ]
Yu, Lingfei [1 ]
Hu, Zhenghua [3 ]
Sun, Wenjuan [1 ]
Zhang, Qing [4 ,6 ]
机构
[1] Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteorol, Sch Appl Meteorol, Nanjing, Peoples R China
[4] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Atmospher Boundary Layer Phys & Atmo, Beijing, Peoples R China
[5] Chinese Acad Sci, Inst Bot, 20 Nanxin Village,Xiangshan St, Beijing, Peoples R China
[6] Chinese Acad Sci, Insitute Atmospher Phys, 40 Huayanli,Beichen West Rd,POB 9804, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
Biochemical limitation; Photosynthetic acclimation; Photosynthetic nitrogen allocation; Japonica rice; WHEAT TRITICUM-AESTIVUM; NITROGEN ALLOCATION; MESOPHYLL CONDUCTANCE; ATMOSPHERIC CO2; STOMATAL CONDUCTANCE; LEAF PHOTOSYNTHESIS; SEASONAL-CHANGES; ENRICHMENT FACE; CARBON-DIOXIDE; GAS-EXCHANGE;
D O I
10.1016/j.jplph.2022.153889
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Photosynthetic acclimation to prolonged elevated CO2 could be attributed to the two limited biochemical capacity, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylation and ribulose-1,5-bisphosphate (RuBP) regeneration, however, which one is the primary driver is unclear. To quantify photosynthetic acclimation induced by biochemical limitation, we investigated photosynthetic characteristics and leaf nitrogen allocation to photosynthetic apparatus (Rubisco, bioenergetics, and light-harvesting complex) in a japonica rice grown in open-top chambers at ambient CO2 and ambient CO2+200 mu mol mol- 1 (e [CO2]). Results showed that photosynthesis was stimulated under e [CO2], but concomitantly, photosynthetic acclimation obviously occurred across the whole growth stages. The content of leaf nitrogen allocation to Rubisco and biogenetics was reduced by e [CO2], while not in light-harvesting complex. Unlike the content, there was little effects of CO2 enrichment on the percentage of nitrogen allocation to photosynthetic components. Additionally, leaf nitrogen did not reallocate within photosynthetic apparatus until the imbalance of sink-source under e [CO2]. The contribution of biochemical limitations, including Rubisco carboxylation and RuBP regeneration, to photosynthetic acclimation averaged 36.2% and 63.8% over the growing seasons, respectively. This study suggests that acclimation of photosynthesis is mainly driven by RuBP regeneration limitation and highlights the importance of RuBP regeneration relative to Rubisco carboxylation in the future CO2 enrichment.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] EFFECTS OF SOURCE-SINK RELATIONS ON PHOTOSYNTHETIC ACCLIMATION TO ELEVATED CO2
    ARP, WJ
    PLANT CELL AND ENVIRONMENT, 1991, 14 (08) : 869 - 875
  • [22] New insight into photosynthetic acclimation to elevated CO2: The role of leaf nitrogen and ribulose-1,5-bisphosphate carboxylase/oxygenase content in rice leaves
    Seneweera, Saman
    Makino, Amane
    Hirotsu, Naoki
    Norton, Robert
    Suzuki, Yuji
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2011, 71 (02) : 128 - 136
  • [23] Methane emissions in japonica rice paddy fields under different elevated CO2 concentrations
    Wang, Yuanyuan
    Hu, Zhenghua
    Liu, Chao
    Wu, Zhurong
    Chen, Shutao
    NUTRIENT CYCLING IN AGROECOSYSTEMS, 2022, 122 (02) : 173 - 189
  • [24] Sites of Action of Elevated CO2 on Leaf Development in Rice: Discrimination between the Effects of Elevated CO2 and Nitrogen Deficiency
    Tsutsumi, Koichi
    Konno, Masae
    Miyazawa, Shin-Ichi
    Miyao, Mitsue
    PLANT AND CELL PHYSIOLOGY, 2014, 55 (02) : 258 - 268
  • [25] Comparison of photosynthetic acclimation to elevated CO2 and limited nitrogen supply in soybean
    Sims, DA
    Luo, Y
    Seemann, JR
    PLANT CELL AND ENVIRONMENT, 1998, 21 (09) : 945 - 952
  • [26] Yield, dry matter distribution and photosynthetic characteristics of rice under elevated CO2 and increased temperature conditions
    Wang, Weilu
    Cai, Chuang
    He, Jiang
    Gu, Junfei
    Zhu, Guanglong
    Zhang, Weiyang
    Zhu, Jianguo
    Liu, Gang
    FIELD CROPS RESEARCH, 2020, 248
  • [27] Species characteristics and intraspecific variation in growth and photosynthesis of Cryptomeria japonica under elevated O3 and CO2
    Hiraoka, Yuichiro
    Iki, Taiichi
    Nose, Mine
    Tobita, Hiroyuki
    Yazaki, Kenichi
    Watanabe, Atsushi
    Fujisawa, Yoshitake
    Kitao, Mitsutoshi
    TREE PHYSIOLOGY, 2017, 37 (06) : 733 - 743
  • [28] Ecohydrological responses of dense canopies to environmental variability: 2. Role of acclimation under elevated CO2
    Drewry, D. T.
    Kumar, P.
    Long, S.
    Bernacchi, C.
    Liang, X. -Z.
    Sivapalan, M.
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2010, 115
  • [29] Photosynthetic acclimation to elevated CO2 in relation to leaf saccharide constituents in wheat and sunflower
    Ghildiyal, MC
    Rafique, S
    Sharma-Natu, P
    PHOTOSYNTHETICA, 2001, 39 (03) : 447 - 452
  • [30] Future CO2, warming and water deficit impact white and red Tempranillo grapevine: Photosynthetic acclimation to elevated CO2 and biomass allocation
    Kizildeniz, Tefide
    Pascual, Inmaculada
    Irigoyen, Juan Jose
    Morales, Fermin
    PHYSIOLOGIA PLANTARUM, 2021, 172 (03) : 1779 - 1794