Ultrahigh overall-performance phase-change memory by yttrium dragging

被引:19
|
作者
Liu, Bin [1 ]
Li, Kaiqi [2 ]
Zhou, Jian [2 ]
Wu, Liangcai [3 ]
Song, Zhitang [4 ]
Zhao, Weisheng [1 ]
Elliott, Stephen R. [2 ,5 ,6 ]
Sun, Zhimei [2 ]
机构
[1] Beihang Univ, Sch Integrated Circuit Sci & Engn, Beijing 100191, Peoples R China
[2] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
[3] Donghua Univ, Coll Sci, Shanghai 201620, Peoples R China
[4] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, 865 Changning Rd, Shanghai 200050, Peoples R China
[5] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
[6] Univ Oxford, Phys & Theoret Chem Lab, Oxford OX1 3QZ, England
基金
中国国家自然科学基金;
关键词
SB-TE; CRYSTALLIZATION; RESISTANCE; NUCLEATION; CANDIDATE; NETWORKS; SC;
D O I
10.1039/d2tc04538a
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Chalcogenide phase-change materials are well-acknowledged as data-storage media and are currently at the forefront as the basis of emerging neuromorphic devices, where analogue memory is used for both data storage and computation. However, neuromorphic devices are functionally more demanding, and the overall optimization of device performance is thus the top priority of phase-change materials development. Here, an ultrahigh overall-performance phase-change random access memory is described, including improved characteristics such as low resistance drift, high data retention, low power consumption, fast operation speed, and good cycling endurance, which has been achieved based on the phase-change materials, yttrium-doped Sb2Te3. Moreover, the resistance-drift mechanism of amorphous Sb2Te3 is firstly unraveled and attributed to temporal structural relaxation from a highly-stressed state towards an energetically more favorable equilibrium state, based on ab initio molecular-dynamics simulations. The yttrium dopant modifies the amorphous structure of Sb2Te3 and its atomic-drag effect improves the overall performance of the base material, paving the way toward the development of an advanced neuromorphic computing system.
引用
收藏
页码:1360 / 1368
页数:9
相关论文
共 50 条
  • [41] Read Disturbances in Cross-Point Phase-Change Memory Arrays- Part I: Physical Modeling With Phase-Change Dynamics
    Kim, Donguk
    Jang, Jun Tae
    Kim, Changwook
    Kim, Hyun Wook
    Hong, Eunryeong
    Ban, Sanghyun
    Shin, Minchul
    Lee, Hanwool
    Lee, Hyung Dong
    Mo, Hyun-Sun
    Woo, Jiyong
    Kim, Dae Hwan
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2023, 70 (02) : 514 - 520
  • [42] Investigation of Trap Spacing for the Amorphous State of Phase-Change Memory Devices
    Jeyasingh, Rakesh G. D.
    Kuzum, Duygu
    Wong, H. -S. Philip
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2011, 58 (12) : 4370 - 4376
  • [43] Scaling of Data Retention Statistics in Phase-Change Random Access Memory
    Kwon, Yongwoo
    Park, Byoungnam
    Kang, Dae-Hwan
    IEEE ELECTRON DEVICE LETTERS, 2015, 36 (05) : 454 - 456
  • [44] Multilayered Sb-Rich GeSbTe Phase-Change Memory for Best Endurance and Reduced Variability
    Lama, Giusy
    Bernard, Mathieu
    Bourgeois, Guillaume
    Garrione, Julien
    Meli, Valentina
    Castellani, Niccolo
    Sabbione, Chiara
    Prazakova, Lucie
    Rodas, Diana-Stephany Fernandez
    Nolot, Emmanuel
    Cyrille, Marie Claire
    Andrieu, Francois
    Navarro, Gabriele
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (08) : 4248 - 4253
  • [45] Capacitance Behavior With Voltage Bias in Phase-Change Memory for Fast Operation
    Chen, Ziqi
    Tong, Hao
    Li, Xin
    Wang, Lun
    Cai, Wang
    Miao, Xiangshui
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (11) : 5592 - 5597
  • [46] A Robust and Efficient Compact Model for Phase-Change Memory Circuit Simulations
    Chen, Xuhui
    Ding, Feilong
    Huang, Xiaoqing
    Lin, Xinnan
    Wang, Runsheng
    Chan, Mansun
    Zhang, Lining
    Huang, Ru
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (09) : 4404 - 4410
  • [47] Temperature dependence of SET switching characteristics in phase-change memory cells
    He, Qiang
    Li, Zhen
    Liu, Chang
    Meng, Xiang-ru
    Peng, Ju-hong
    Lai, Zhi-bo
    Miao, Xiang-shui
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (38)
  • [48] Phase-change heterostructure enables ultralow noise and drift for memory operation
    Ding, Keyuan
    Wang, Jiangjing
    Zhou, Yuxing
    Tian, He
    Lu, Lu
    Mazzarello, Riccardo
    Jia, Chunlin
    Zhang, Wei
    Rao, Feng
    Ma, Evan
    SCIENCE, 2019, 366 (6462) : 210 - +
  • [49] Simulation of phase-change processes in non-volatile memory cells
    Popov, A. I.
    Savinov, I. S.
    Voronkov, E. N.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2006, 352 (9-20) : 1624 - 1627
  • [50] A Finite Element Model for Stochastic Set Operation in Phase-Change Memory
    Shin, Min-Kyu
    Lee, Donghwa
    Cha, Pil-Ryung
    Kwon, Yongwoo
    2019 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC), 2019, : 294 - 295