Numerical Optimization of Cu2O as HTM in Lead-Free Perovskite Solar Cells: A Study to Improve Device Efficiency

被引:6
|
作者
Roy, Avishek [1 ]
Majumdar, Abhijit [2 ]
机构
[1] Vidyasagar Coll, Dept Elect, 39 Sankar Ghosh Lane, Kolkata 700006, India
[2] Indian Inst Engn Sci & Technol, Dept Phys, Sibpur 711103, India
关键词
Pb-free perovskite solar cell; SCAPS; 1D; hole transporting material: Cu2O; photovoltaic performance; HOLE TRANSPORT MATERIALS; COPPER-OXIDE; THIN-FILMS; STRUCTURAL-PROPERTIES; HALIDE PEROVSKITE; PERFORMANCE; PHOTOVOLTAICS; ENHANCEMENT; SIMULATION; STABILITY;
D O I
10.1007/s11664-022-10181-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Cu2O is a promising hole transport material (HTM) that offers the possibility to improve the power conversion efficiency (PCE) of the perovskite solar cells (PSCs). An escalation in the PCE of the non-toxic perovskite structures depends on the optimization of the HTM. This work aims to improve the PCE of the Cu2O/CH3NH3SnI3/PCBM/FTO and Cu2O/CH3NH3GeI3/PCBM/FTO solar cells by numerical simulation using SCAPS-1D. The variation of band-gap (2.0-2.6 eV), electron affinity (3.0-3.6 eV), acceptor density (10(17)-10(22) cm(-3)) and defect density (10(17)-10(22) cm(-3)) of Cu2O as HTM has been studied and optimized for obtaining maximum PCE of the solar cells. The energy band diagrams of the solar cell structures are compared at the optimized band-gap of Cu2O. The optimum absorber perovskite layer thickness is also investigated. Pt is proposed as the most suitable back contact metal for both solar cells. The photovoltaic parameters of the Cu2O/CH3NH3SnI3/PCBM/FTO solar cell are V-OC = 0.96 V, J(SC) = 33.91 mA/cm(2), FF = 81.36% and PCE = 27.08%. The photovoltaic parameters of the Cu2O/CH3NH3GeI3/PCBM/FTO solar cell are V-OC = 1.89 V, J(SC) = 15.86 mA/cm(2), FF = 88.82% and PCE = 26.68%. Both the solar cells showcased remarkable enhancement of PCE, which is higher than previous reports. The simulation results provide a viable route in the future to design highly efficient and stable Pb-free perovskite solar cells with modified electrical parameters of Cu2O.
引用
收藏
页码:2020 / 2033
页数:14
相关论文
共 50 条
  • [31] CsPbI3 lead and CsSnI3 lead-free perovskite materials for solar cell device
    Gamal, Aliaa
    Alruqi, Mansoor
    Rabia, Mohamed
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (15) : 21739 - 21756
  • [32] Numerical Modeling and DFT Study for a CsPbCl3 Lead-Based Perovskite Solar Cell Using Zn-Doped Cu2O as HTL
    Hachimi, M. A.
    Tarbi, A.
    El-Mrabet, M.
    Erguig, H.
    Chtouki, T.
    JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2024, : 756 - 770
  • [33] Device modeling and numerical analysis of lead-free MASnI3/Ca3AsI3 based perovskite solar cells with over 38% efficiency
    Ali, Md. Earshad
    Haque, Md. Mahfuzul
    Cheragee, Sheikh Hasib
    SOLAR ENERGY, 2025, 288
  • [34] Design of Dopant and Lead-Free Novel Perovskite Solar Cell for 16.85% Efficiency
    Moiz, Syed Abdul
    Alahmadi, Ahmed N. M.
    POLYMERS, 2021, 13 (13)
  • [35] Challenges and Progress in Lead-Free Halide Double Perovskite Solar Cells
    Ji, Fuxiang
    Boschloo, Gerrit
    Wang, Feng
    Gao, Feng
    SOLAR RRL, 2023, 7 (06)
  • [36] Challenges and strategies of all-inorganic lead-free halide perovskite solar cells
    Wei, Huiyun
    Qiu, Peng
    Li, Ye
    Peng, Mingzeng
    Zheng, Xinhe
    Liu, Xiaohu
    CERAMICS INTERNATIONAL, 2022, 48 (05) : 5876 - 5891
  • [37] Doping strategies for inorganic lead-free halide perovskite solar cells: progress and challenges
    Jiang, Siyu
    Liu, Manying
    Zhao, Dandan
    Guo, Yanru
    Fu, Junjie
    Lei, Yan
    Zhang, Yange
    Zheng, Zhi
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (06) : 4794 - 4811
  • [38] Dimensional Tuning in Lead-Free Tin Halide Perovskite for Solar Cells
    Zhao, Jinbo
    Zhang, Zuhong
    Li, Guixiang
    Aldamasy, Mahmoud H. H.
    Li, Meng
    Abate, Antonio
    ADVANCED ENERGY MATERIALS, 2023, 13 (13)
  • [39] Numerical insights of lead-free manganese-based perovskite solar cell
    Singh, Neelima
    Agarwal, Mohit
    ELECTRICAL ENGINEERING, 2025, 107 (02) : 1975 - 1991
  • [40] Guidelines for Fabricating Highly Efficient Perovskite Solar Cells with Cu2O as the Hole Transport Material
    Sajid, Sajid
    Alzahmi, Salem
    Ben Salem, Imen
    Obaidat, Ihab M.
    NANOMATERIALS, 2022, 12 (19)