The discontinuous Galerkin and the nonconforming ECR element approximations for an MHD Stokes eigenvalue problem

被引:2
作者
Sun, Lingling [1 ,2 ]
Bi, Hai [1 ]
Yang, Yidu [1 ]
机构
[1] Guizhou Normal Univ, Sch Math Sci, Guiyang 550001, Peoples R China
[2] Guizhou Med Univ, Sch Biol & Engn, Guiyang 550001, Peoples R China
基金
中国国家自然科学基金;
关键词
discontinuous Galerkin method; magnetic field; the enriched Crouzeix-Raviart element; the MHD Stokes eigenvalue problem; LOWER BOUNDS; ERROR ANALYSIS;
D O I
10.1002/mma.8897
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we adopt the discontinuous Galerkin finite element method and the enriched Crouzeix-Raviart finite element method to study the magnetohydrodynamic (MHD) Stokes eigenvalue problem describing the flow of a viscous and electrically conducting fluid in a duct under the influence of a uniform magnetic field. We give the convergence and error analysis for the approximations, and the theoretical analysis and numerical experiments show that the methods are effective and can be applied to general domains. We also explore the influence of the Hartmann number on the eigenpairs and the consequential variation of the eigenstructure with the magnetic field by numerical experiments.
引用
收藏
页码:6154 / 6176
页数:23
相关论文
共 34 条
[31]   Chebyshev spectral collocation method approximations of the Stokes eigenvalue problem based on penalty techniques [J].
Turk, Onder ;
Codina, Ramon .
APPLIED NUMERICAL MATHEMATICS, 2019, 145 :188-200
[32]   Explicit lower bounds for Stokes eigenvalue problems by using nonconforming finite elements [J].
Xie, Manting ;
Xie, Hehu ;
Liu, Xuefeng .
JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2018, 35 (01) :335-354
[33]   Eigenvalue approximation from below using non-conforming finite elements [J].
Yang YiDu ;
Zhang ZhiMin ;
Lin FuBiao .
SCIENCE CHINA-MATHEMATICS, 2010, 53 (01) :137-150
[34]  
Zhang Y., 2019, NUMER METH PART D E, V35, P1