Finite and nilpotent strongly verbally closed groups

被引:2
作者
Klyachko, Anton A. [1 ,2 ]
Miroshnichenko, Veronika Yu [1 ]
Olshanskii, Alexander Yu [1 ,2 ,3 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Mech & Math, MSU, Moscow 119991, Russia
[2] Moscow Ctr Fundamental & Appl Math, Moscow, Russia
[3] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
基金
俄罗斯科学基金会;
关键词
Verbally closed subgroups; retracts of groups; equations in groups; SUBGROUPS; RETRACTS;
D O I
10.1142/S0219498823501888
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show, in particular, that, if a finite group H is a retract of any finite group containing H as a verbally closed subgroup, then the centre of H is a direct factor of H.
引用
收藏
页数:19
相关论文
共 25 条
  • [1] [Anonymous], 1965, Algebra
  • [2] Algebraic geometry over groups I. Algebraic sets and ideal theory
    Baumslag, G
    Myasnikov, A
    Remeslennikov, V
    [J]. JOURNAL OF ALGEBRA, 1999, 219 (01) : 16 - 79
  • [3] Bogopolski O., 2019, ARXIV
  • [4] Bogopolski O., 2018, ARXIV
  • [5] Chevalley C., 1935, ABH MATH SEM HAMBURG, V11, P73
  • [6] Kargapolov M. I., 1979, FUNDAMENTALS THEORY, V62
  • [7] Verbally closed virtually free subgroups
    Klyachko, Ant. A.
    Mazhuga, A. M.
    [J]. SBORNIK MATHEMATICS, 2018, 209 (06) : 850 - 856
  • [8] The Klein bottle group is not strongly verbally closed, though awfully close to being so
    Klyachko, Anton A.
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2021, 64 (02): : 491 - 497
  • [9] Virtually free finite-normal-subgroup-free groups are strongly verbally closed
    Klyachko, Anton A.
    Mazhuga, Andrey M.
    Miroshnichenko, Veronika Yu
    [J]. JOURNAL OF ALGEBRA, 2018, 510 : 319 - 330
  • [10] Kovacs L. G., 1966, J AUSTRAL MATH SOC, V6, P237