Delta-convex structure of the singular set of distance functions

被引:1
作者
Miura, Tatsuya [1 ,3 ]
Tanaka, Minoru [2 ]
机构
[1] Tokyo Inst Technol, Dept Math, Meguro, Tokyo, Japan
[2] Tokai Univ, Sch Sci, Dept Math, Hiratsuka, Kanagawa, Japan
[3] Tokyo Inst Technol, Dept Math, Meguro, Tokyo 1528511, Japan
关键词
CUT LOCUS; CLOSED SUBSETS; BOUNDARY; APPROXIMATION; PROPERTY; DOMAIN;
D O I
10.1002/cpa.22195
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the distance function from any closed subset of any complete Finsler manifold, we prove that the singular set is equal to a countable union of delta-convex hypersurfaces up to an exceptional set of codimension two. In addition, in dimension two, the whole singular set is equal to a countable union of delta-convex Jordan arcs up to isolated points. These results are new even in the standard Euclidean space and shown to be optimal in view of regularity.
引用
收藏
页码:3631 / 3669
页数:39
相关论文
共 69 条
  • [1] Singular gradient flow of the distance function and homotopy equivalence
    Albano, P.
    Cannarsa, P.
    Nguyen, Khai T.
    Sinestrari, C.
    [J]. MATHEMATISCHE ANNALEN, 2013, 356 (01) : 23 - 43
  • [2] Propogation of singularities for solutions of nonlinear first order partial differential equations
    Albano, P
    Cannarsa, P
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 162 (01) : 1 - 23
  • [3] Albano P., 1999, ANN SCUOLA NORM SUP, V28, P719
  • [4] ON THE STRUCTURE OF SINGULAR SETS OF CONVEX-FUNCTIONS
    ALBERTI, G
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1994, 2 (01) : 17 - 27
  • [5] ON THE SINGULARITIES OF CONVEX-FUNCTIONS
    ALBERTI, G
    AMBROSIO, L
    CANNARSA, P
    [J]. MANUSCRIPTA MATHEMATICA, 1992, 76 (3-4) : 421 - 435
  • [6] Ambrosio L., 1993, ANN SCUOLA NORM SU S, V20, P597
  • [7] CUT AND SINGULAR LOCI UP TO CODIMENSION 3
    Angulo Ardoy, Pablo
    Guijarro, Luis
    [J]. ANNALES DE L INSTITUT FOURIER, 2011, 61 (04) : 1655 - 1681
  • [8] [Anonymous], 2023, NODEA-NONLINEAR DIFF, V30, P27
  • [9] [Anonymous], 1982, Generalized solutions of Hamilton-Jacobi equations
  • [10] Attali D, 2009, MATH VIS, P109, DOI 10.1007/b106657_6