ScLinear predicts protein abundance at single-cell resolution

被引:0
|
作者
Hanhart, Daniel [1 ]
Gossi, Federico [1 ]
Rapsomaniki, Maria Anna [2 ]
Kruithof-de Julio, Marianna [1 ,3 ]
Chouvardas, Panagiotis [1 ,3 ]
机构
[1] Univ Bern, Dept BioMed Res, Urol Res Lab, CH-3008 Bern, Switzerland
[2] IBM Res Europe, Saumerstr 4, CH-8803 Ruschlikon, Switzerland
[3] Univ Bern, Bern Univ Hosp, Dept Urol, Inselspital, CH-3010 Bern, Switzerland
基金
瑞士国家科学基金会;
关键词
D O I
10.1038/s42003-024-05958-4
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-cell multi-omics have transformed biomedical research and present exciting machine learning opportunities. We present scLinear, a linear regression-based approach that predicts single-cell protein abundance based on RNA expression. ScLinear is vastly more efficient than state-of-the-art methodologies, without compromising its accuracy. ScLinear is interpretable and accurately generalizes in unseen single-cell and spatial transcriptomics data. Importantly, we offer a critical view in using complex algorithms ignoring simpler, faster, and more efficient approaches. scLinear is a simple linear regression model that outperforms complex machine/deep learning approaches in predicting protein abundance at single-cell resolution.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Thymic iNKT cell differentiation at single-cell resolution
    Wang, Ke
    Zhao, Weijia
    Jin, Rong
    Ge, Qing
    CELLULAR & MOLECULAR IMMUNOLOGY, 2021, 18 (08) : 2065 - 2066
  • [42] Single-Cell Resolution of T Cell Immune Responses
    Buchholz, Veit R.
    Flossdorf, Michael
    ADVANCES IN IMMUNOLOGY, VOL 137, 2018, 137 : 1 - 41
  • [43] Characterization of the Zebrafish Cell Landscape at Single-Cell Resolution
    Jiang, Mengmeng
    Xiao, Yanyu
    Weigao, E.
    Ma, Lifeng
    Wang, Jingjing
    Chen, Haide
    Gao, Ce
    Liao, Yuan
    Guo, Qile
    Peng, Jinrong
    Han, Xiaoping
    Guo, Guoji
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 9
  • [44] Inferring cell-cell communication at single-cell resolution
    Wilk, Aaron J.
    Blish, Catherine A.
    NATURE BIOTECHNOLOGY, 2024, 42 (03) : 390 - 391
  • [45] Deconstructing pulmonary fibrosis at single-cell resolution
    Kropski, Jonathan A.
    Calvi, Carla L.
    Habermann, A. Chris
    Guitierrez, Austin
    Winters, Nichelle
    Rodenberry, John C.
    McDonnell, Wyatt
    Shaver, Ciara M.
    Ware, Lorraine B.
    Mallal, Simon
    Blackwell, Timothy S.
    Banovich, Nicholas E.
    FASEB JOURNAL, 2019, 33
  • [46] Understanding cervical cancer at single-cell resolution
    Yue, Shengqin
    Wang, Qian
    Zhang, Jiajun
    Hu, Qinyong
    Liu, Chao
    CANCER LETTERS, 2023, 576
  • [47] Dissecting the human leptomeninges at single-cell resolution
    Nicola A. Kearns
    Artemis Iatrou
    Daniel J. Flood
    Sashini De Tissera
    Zachary M. Mullaney
    Jishu Xu
    Chris Gaiteri
    David A. Bennett
    Yanling Wang
    Nature Communications, 14
  • [48] Mapping cancer genetics at single-cell resolution
    Gilbert, Luke A.
    SCIENCE TRANSLATIONAL MEDICINE, 2020, 12 (558)
  • [49] The establishment of gene silencing at single-cell resolution
    Erin A Osborne
    Sandrine Dudoit
    Jasper Rine
    Nature Genetics, 2009, 41 : 800 - 806
  • [50] Deconstructing Pulmonary Fibrosis at Single-Cell Resolution
    Habermann, A.
    Gutierrez, A. J.
    Bui, L. T.
    Yahn, S. L.
    Winters, N. I.
    Calvi, C. L.
    Peter, L.
    Chung, M.
    Taylor, C. J.
    Ding, G.
    Wood, L.
    Bacchetta, M. J.
    Shaver, C. M.
    Ware, L. B.
    Bremmer, R. M.
    Walia, R.
    Blackwell, T. S.
    Banovich, N.
    Kropski, J. A.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2020, 201