ScLinear predicts protein abundance at single-cell resolution

被引:0
|
作者
Hanhart, Daniel [1 ]
Gossi, Federico [1 ]
Rapsomaniki, Maria Anna [2 ]
Kruithof-de Julio, Marianna [1 ,3 ]
Chouvardas, Panagiotis [1 ,3 ]
机构
[1] Univ Bern, Dept BioMed Res, Urol Res Lab, CH-3008 Bern, Switzerland
[2] IBM Res Europe, Saumerstr 4, CH-8803 Ruschlikon, Switzerland
[3] Univ Bern, Bern Univ Hosp, Dept Urol, Inselspital, CH-3010 Bern, Switzerland
基金
瑞士国家科学基金会;
关键词
D O I
10.1038/s42003-024-05958-4
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-cell multi-omics have transformed biomedical research and present exciting machine learning opportunities. We present scLinear, a linear regression-based approach that predicts single-cell protein abundance based on RNA expression. ScLinear is vastly more efficient than state-of-the-art methodologies, without compromising its accuracy. ScLinear is interpretable and accurately generalizes in unseen single-cell and spatial transcriptomics data. Importantly, we offer a critical view in using complex algorithms ignoring simpler, faster, and more efficient approaches. scLinear is a simple linear regression model that outperforms complex machine/deep learning approaches in predicting protein abundance at single-cell resolution.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Immune ageing at single-cell resolution
    Denis A. Mogilenko
    Irina Shchukina
    Maxim N. Artyomov
    Nature Reviews Immunology, 2022, 22 : 484 - 498
  • [22] Reading the heart at single-cell resolution
    Zhou, Bingying
    Wang, Li
    JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2020, 148 : 34 - 45
  • [23] The complexity of neuroinflammation at single-cell resolution
    Ravikiran M. Raju
    Li-Huei Tsai
    Nature Reviews Neurology, 2019, 15 : 249 - 250
  • [24] Tumour vasculature at single-cell resolution
    Pan, Xu
    Li, Xin
    Dong, Liang
    Liu, Teng
    Zhang, Min
    Zhang, Lining
    Zhang, Xiyuan
    Huang, Lingjuan
    Shi, Wensheng
    Sun, Hongyin
    Fang, Zhaoyu
    Sun, Jie
    Huang, Yaoxuan
    Shao, Hua
    Wang, Yeqi
    Yin, Mingzhu
    NATURE, 2024, 632 (8024) : 429 - +
  • [25] Evolutionary neurogenomics at single-cell resolution
    Caglayan, Emre
    Konopka, Genevieve
    CURRENT OPINION IN GENETICS & DEVELOPMENT, 2024, 88
  • [26] Thermogenetic neurostimulation with single-cell resolution
    Ermakova, Yulia G.
    Lanin, Aleksandr A.
    Fedotov, Ilya V.
    Roshchin, Matvey
    Kelmanson, Ilya V.
    Kulik, Dmitry
    Bogdanova, Yulia A.
    Shokhina, Arina G.
    Bilan, Dmitry S.
    Staroverov, Dmitry B.
    Balaban, Pavel M.
    Fedotov, Andrei B.
    Sidorov-Biryukov, Dmitry A.
    Nikitin, Evgeny S.
    Zheltikov, Aleksei M.
    Belousov, Vsevolod V.
    NATURE COMMUNICATIONS, 2017, 8
  • [27] Thermogenetic neurostimulation with single-cell resolution
    Ermakova, Y.
    Lanin, A.
    Fedotov, I.
    Roshchin, M.
    Balaban, P.
    Zheltikov, A.
    Belousov, V.
    FEBS JOURNAL, 2017, 284 : 32 - 32
  • [28] Human Synovium at Single-Cell Resolution
    Edalat, S. G.
    Micheroli, R.
    Kuret, T.
    Burki, K.
    Pauli, C.
    Sodin-Semrl, S.
    Distler, O.
    Ospelt, C.
    Rot, G.
    Bertoncelj, Frank M.
    SWISS MEDICAL WEEKLY, 2020, : 8S - 8S
  • [29] Inferring cell–cell communication at single-cell resolution
    Nature Biotechnology, 2024, 42 : 390 - 391
  • [30] Single-cell protein analysis
    Wu, Meiye
    Singh, Anup K.
    CURRENT OPINION IN BIOTECHNOLOGY, 2012, 23 (01) : 83 - 88