Exploring reservoir computing: Implementation via double stochastic nanowire networks

被引:0
作者
Tang, Jian-Feng [1 ,6 ]
Xia, Lei [1 ]
Li, Guang-Li [1 ]
Fu, Jun [1 ]
Duan, Shukai [1 ,3 ,4 ]
Wang, Lidan [1 ,2 ,3 ,5 ,6 ]
机构
[1] Southwest Univ, Coll Artificial Intelligence, Chongqing 400715, Peoples R China
[2] Brain Inspired Comp & Intelligent Control Chongqi, Chongqing 400715, Peoples R China
[3] Natl & Local joint Engn Lab Intelligent Transmiss, Chongqing 400715, Peoples R China
[4] Chongqing Brain Sci Collaborat Innovat Ctr, Chongqing 400715, Peoples R China
[5] Southwest Univ, Key Lab Luminescence Anal & Mol Sensing, Minist Educ, Chongqing 400715, Peoples R China
[6] State Key Lab Intelligent Vehicle Safety Technol, Chongqing 401120, Peoples R China
基金
中国国家自然科学基金;
关键词
double-layer stochastic (DS) nanowire network architecture; neuromorphic computation; nanowire network; reservoir computing; time series prediction; 73.63.-b; 05.45.-a; SYNAPTIC PLASTICITY; PREDICTION; CLASSIFICATION;
D O I
10.1088/1674-1056/aceeea
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Neuromorphic computing, inspired by the human brain, uses memristor devices for complex tasks. Recent studies show that self-organizing random nanowires can implement neuromorphic information processing, enabling data analysis. This paper presents a model based on these nanowire networks, with an improved conductance variation profile. We suggest using these networks for temporal information processing via a reservoir computing scheme and propose an efficient data encoding method using voltage pulses. The nanowire network layer generates dynamic behaviors for pulse voltages, allowing time series prediction analysis. Our experiment uses a double stochastic nanowire network architecture for processing multiple input signals, outperforming traditional reservoir computing in terms of fewer nodes, enriched dynamics and improved prediction accuracy. Experimental results confirm the high accuracy of this architecture on multiple real-time series datasets, making neuromorphic nanowire networks promising for physical implementation of reservoir computing.
引用
收藏
页数:11
相关论文
共 46 条
  • [1] 2022 roadmap on neuromorphic computing and engineering
    Christensen, Dennis, V
    Dittmann, Regina
    Linares-Barranco, Bernabe
    Sebastian, Abu
    Le Gallo, Manuel
    Redaelli, Andrea
    Slesazeck, Stefan
    Mikolajick, Thomas
    Spiga, Sabina
    Menzel, Stephan
    Valov, Ilia
    Milano, Gianluca
    Ricciardi, Carlo
    Liang, Shi-Jun
    Miao, Feng
    Lanza, Mario
    Quill, Tyler J.
    Keene, Scott T.
    Salleo, Alberto
    Grollier, Julie
    Markovic, Danijela
    Mizrahi, Alice
    Yao, Peng
    Yang, J. Joshua
    Indiveri, Giacomo
    Strachan, John Paul
    Datta, Suman
    Vianello, Elisa
    Valentian, Alexandre
    Feldmann, Johannes
    Li, Xuan
    Pernice, Wolfram H. P.
    Bhaskaran, Harish
    Furber, Steve
    Neftci, Emre
    Scherr, Franz
    Maass, Wolfgang
    Ramaswamy, Srikanth
    Tapson, Jonathan
    Panda, Priyadarshini
    Kim, Youngeun
    Tanaka, Gouhei
    Thorpe, Simon
    Bartolozzi, Chiara
    Cleland, Thomas A.
    Posch, Christoph
    Liu, Shihchii
    Panuccio, Gabriella
    Mahmud, Mufti
    Mazumder, Arnab Neelim
    [J]. NEUROMORPHIC COMPUTING AND ENGINEERING, 2022, 2 (02):
  • [2] Synaptic plasticity: Multiple forms, functions, and mechanisms
    Citri, Ami
    Malenka, Robert C.
    [J]. NEUROPSYCHOPHARMACOLOGY, 2008, 33 (01) : 18 - 41
  • [3] Díaz-Talavera A, 2019, SCI REP-UK, V9, DOI [10.1038/s41598-018-37439-0, 10.1038/s41598-019-44290-4]
  • [4] Event labeling combining ensemble detectors and background knowledge
    Fanaee-T H.
    Gama J.
    [J]. Progress in Artificial Intelligence, 2014, 2 (2-3) : 113 - 127
  • [5] Point-Based Estimator for Arbitrary-Oriented Object Detection in Aerial Images
    Fu, Kun
    Chang, Zhonghan
    Zhang, Yue
    Sun, Xian
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (05): : 4370 - 4387
  • [6] Deep reservoir computing: A critical experimental analysis
    Gallicchio, Claudio
    Micheli, Alessio
    Pedrelli, Luca
    [J]. NEUROCOMPUTING, 2017, 268 : 87 - 99
  • [7] Time series forecasting based on echo state network and empirical wavelet transformation
    Gao, Ruobin
    Du, Liang
    Duru, Okan
    Yuen, Kum Fai
    [J]. APPLIED SOFT COMPUTING, 2021, 102 (102)
  • [8] Avalanches and edge-of-chaos learning in neuromorphic nanowire networks
    Hochstetter, Joel
    Zhu, Ruomin
    Loeffler, Alon
    Diaz-Alvarez, Adrian
    Nakayama, Tomonobu
    Kuncic, Zdenka
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [9] Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
    Jaeger, H
    Haas, H
    [J]. SCIENCE, 2004, 304 (5667) : 78 - 80
  • [10] Jaeger H., 2002, Advances in neural information processing systems, V15